Plant tissues are able to generate complex movements via shape modifications. These effects are tightly related to distinctive multi-scale composite architectures of the plant material, and can therefore largely be interpreted by composite mechanics principles. Here, we propose a generic framework for the analysis and prediction of the shape morphing of intricate biological composite materials, arising from changes in humidity. We have examined in depth the hierarchical structures of three types of seed pods for which we propose a theoretical scheme that is able to accurately simulate the relevant shape deformations. The validity and generality of this approach are confirmed by means of laboratory scale synthetic models with similar architectures leading to equivalent morphing patterns. Such synthetic configurations could pave the way to future morphing architectures of advanced materials and structures.

1.
I.
Burgert
and
P.
Fratzl
,
Integr. Comp. Biol.
49
(
1
),
69
79
(
2009
).
2.
J.
Dumais
and
Y.
Forterre
,
Annu. Rev. Fluid Mech.
44
,
453
478
(
2012
).
3.
R.
Elbaum
,
L.
Zaltzman
,
I.
Burgert
, and
P.
Fratzl
,
Science
316
,
884
886
(
2007
).
4.
Y.
Abraham
,
C.
Tamburu
,
E.
Klein
,
J. W.
Dunlop
,
P.
Fratzl
,
U.
Raviv
, and
R.
Elbaum
,
J. R. Soc. Interface
9
,
640
647
(
2012
).
5.
S. J.
Gerbode
,
J. R.
Puzey
,
A. G.
McCormick
, and
L.
Mahadevan
,
Science
337
,
1087
1091
(
2012
).
6.
L. J.
Gibson
,
J. R. Soc. Interface
9
,
2749
2766
(
2012
).
7.
I.
Burgert
,
M.
Eder
,
N.
Gierlinger
, and
P.
Fratzl
,
Planeta
226
,
981
987
(
2007
).
8.
C.
Dawson
,
J. F. V.
Vincent
, and
M. A.
Rocca
,
Nature
390
(
18/25
),
668
(
1997
).
9.
K.
Schulgasser
and
A.
Wiztum
,
J. Theor. Biol.
230
,
281
288
(
2004
).
10.
S.
Armon
,
E.
Efrati
,
R.
Kupferman
, and
E.
Sharon
,
Science
333
,
1726
1730
(
2011
).
11.
See supplementary material at http://dx.doi.org/10.1063/1.4891191 for more information.
12.
R. F.
Gibson
,
Principles of Composite Material Mechanics
,
Mc-Graw-Hill
(
1994
).
13.
R. C.
Neagu
and
E. K.
Gamstedt
,
J. Mater. Sci.
42
,
10254
10274
(
2007
).
14.
N. M.
Patrikalakis
and
T.
Maekawa
,
Shape Interrogation for Computer Aided Design and Manufacturing
(
Springer
,
2002
).
15.
E.
Reyssat
and
L.
Mahadevan
,
J. R. Soc. Interface
6
,
951
957
(
2009
).
16.
M. E.
Randall
,
S.
Jonathan
,
R.
Grisch
, and
A. R.
Studart
,
Nat. Commun.
4
,
1712
(
2013
).
17.
Y.
Forterre
,
J. M.
Skotheim
,
J.
Dumais
, and
L.
Mahadevan
,
Nature
433
,
421
425
(
2005
).
18.
I.
Burgert
and
P.
Fratzl
,
Philos. Trans. R. Soc. London, Ser. A
367
,
1541
1557
(
2009
).
19.
H.
Liang
and
L.
Mahadevan
,
Proc. Natl. Acad. Sci. U.S.A.
108
(
14
),
5516
5521
(
2011
).
20.
R.
Elbaum
and
Y.
Abraham
,
Plant Sci.
223
,
124
133
(
2014
).
21.
L.
Lonov
,
Adv. Funct. Mater.
23
,
4555
4570
(
2013
).
22.
E.
Elka
and
D.
Elata
,
J. Micromech. Syst.
13
(
2
),
332
341
(
2004
).
23.
O. Y.
Kanner
,
D.
Shilo
,
J.
Sheng
,
R. D.
James
, and
Y.
Ganor
,
Smart Mater. Struct.
22
,
085030
(
2013
).
24.
B.
Bar-On
,
E.
Altus
, and
E. B.
Tadmor
,
Int. J. Solids Struct.
47
,
1243
1252
(
2010
).
25.
B.
Bar-On
and
E.
Altus
,
Probab. Eng. Mech.
25
,
228
234
(
2010
).

Supplementary Material

You do not currently have access to this content.