In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

1.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J.-S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H.
Ri Kim
, and
Y.
Il Song
,
Nat. Nanotechnol.
5
(
8
),
574
(
2010
);
[PubMed]
G. H.
Gelinck
,
H. E. A.
Huitema
,
E.
Van Veenendaal
,
E.
Cantatore
,
L.
Schrijnemakers
,
J. B. P. H.
Van der Putten
,
T. C. T.
Geuns
,
M.
Beenhakkers
,
J. B.
Giesbers
,
B. H.
Huisman
,
E. J.
Meijer
,
E. M.
Benito
,
F. J.
Touwslager
,
A. W.
Marsman
,
B. J. E.
Van Rens
, and
D. M.
De Leeuw
,
Nat. Mater.
3
(
2
),
106
(
2004
).
[PubMed]
2.
J. A.
Rogers
,
Z.
Bao
,
K.
Baldwin
,
A.
Dodabalapur
,
B.
Crone
,
V. R.
Raju
,
V.
Kuck
,
H.
Katz
,
K.
Amundson
,
J.
Ewing
, and
P.
Drzaic
,
Proc. Natl. Acad. Sci. U.S.A.
98
(
9
),
4835
(
2001
).
3.
K.
Cherenack
,
C.
Zysset
,
T.
Kinkeldei
,
N.
Münzenrieder
, and
G.
Tröster
,
Adv. Mater.
22
(
45
),
5178
(
2010
).
4.
C.
Wang
,
D.
Hwang
,
Z.
Yu
,
K.
Takei
,
J.
Park
,
T.
Chen
,
B.
Ma
, and
A.
Javey
,
Nat. Mater.
12
(
10
),
899
(
2013
);
[PubMed]
D.-H.
Kim
,
N.
Lu
,
R.
Ma
,
Y.-S.
Kim
,
R.-H.
Kim
,
S.
Wang
,
J.
Wu
,
S. M.
Won
,
H.
Tao
,
A.
Islam
,
K. J.
Yu
,
T.
Kim
,
R.
Chowdhury
,
M.
Ying
,
L.
Xu
,
M.
Li
,
H.-J.
Chung
,
H.
Keum
,
M.
McCormick
,
P.
Liu
,
Y.-W.
Zhang
,
F. G.
Omenetto
,
Y.
Huang
,
T.
Coleman
, and
J. A.
Rogers
,
Science
333
(
6044
),
838
843
(
2011
).
[PubMed]
5.
S. W.
Hwang
,
H.
Tao
,
D. H.
Kim
,
H. Y.
Cheng
,
J. K.
Song
,
E.
Rill
,
M. A.
Brenckle
,
B.
Panilaitis
,
S. M.
Won
,
Y. S.
Kim
,
Y. M.
Song
,
K. J.
Yu
,
A.
Ameen
,
R.
Li
,
Y. W.
Su
,
M. M.
Yang
,
D. L.
Kaplan
,
M. R.
Zakin
,
M. J.
Slepian
,
Y. G.
Huang
,
F. G.
Omenetto
, and
J. A.
Rogers
,
Science
337
(
6102
),
1640
(
2012
).
6.
D. H.
Kim
,
J. H.
Ahn
,
W. M.
Choi
,
H. S.
Kim
,
T. H.
Kim
,
J. Z.
Song
,
Y. G. Y.
Huang
,
Z. J.
Liu
,
C.
Lu
, and
J. A.
Rogers
,
Science
320
(
5875
),
507
(
2008
).
7.
H.
Gleskova
,
S.
Wagner
, and
Z.
Suo
,
J. Non-Cryst. Solids
266
,
1320
(
2000
).
8.
C.
Wang
,
J. C.
Chien
,
K.
Takei
,
T.
Takahashi
,
J.
Nah
,
A. M.
Niknejad
, and
A.
Javey
,
Nano Lett.
12
(
3
),
1527
(
2012
);
[PubMed]
M.
Kaltenbrunner
,
T.
Sekitani
,
J.
Reeder
,
T.
Yokota
,
K.
Kuribara
,
T.
Tokuhara
,
M.
Drack
,
R.
Schwodiauer
,
I.
Graz
,
S.
Bauer-Gogonea
,
S.
Bauer
, and
T.
Someya
,
Nature
499
(
7459
),
458
(
2013
).
[PubMed]
9.
T.
Sekitani
,
U.
Zschieschang
,
H.
Klauk
, and
T.
Someya
,
Nat. Mater.
9
(
12
),
1015
(
2010
).
10.
F.
Ante
,
D.
Kalblein
,
T.
Zaki
,
U.
Zschieschang
,
K.
Takimiya
,
M.
Ikeda
,
T.
Sekitani
,
T.
Someya
,
J. N.
Burghartz
,
K.
Kern
, and
H.
Klauk
,
Small
8
(
1
),
73
(
2012
).
11.
G. A.
Salvatore
,
N.
Münzenrieder
,
T.
Kinkeldei
,
L.
Petti
,
C.
Zysset
,
I.
Strebel
,
L.
Büthe
, and
G.
Tröster
,
Nat. Commun.
5
,
2982
(
2014
);
[PubMed]
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
(
22
),
2945
(
2012
).
[PubMed]
12.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
(
7016
),
488
(
2004
).
13.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley-Interscience
,
Hoboken, N.J.
,
2007
), pp.
303
; 348.
14.
C.
Wang
,
K.
Takei
,
T.
Takahashi
, and
A.
Javey
,
Chem. Soc. Rev.
42
(
7
),
2592
(
2013
);
[PubMed]
A. E.
Khorasani
,
T. L.
Alford
, and
D. K.
Schroder
,
IEEE Trans. Electron Devices
60
(
8
),
2592
(
2013
).
15.
E. A.
Angelopoulos
,
M.
Zimmermann
,
W.
Appel
,
S.
Endler
,
S.
Ferwana
,
C.
Harendt
,
T.
Hoang
,
A.
Pruemm
, and
J. N.
Burghartz
,
Int. Electron Devices Meet.
2010
,
2.5.1
.
16.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
, and
K. L.
Shepard
,
Nat. Nanotechnol.
5
(
10
),
722
(
2010
);
[PubMed]
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
(
5696
),
666
(
2004
);
[PubMed]
H.-Y.
Chang
,
S.
Yang
,
J.
Lee
,
L.
Tao
,
W.-S.
Hwang
,
D.
Jena
,
N.
Lu
, and
D.
Akinwande
,
ACS Nano
7
,
5446
(
2013
);
[PubMed]
G. A.
Salvatore
,
N.
Münzenrieder
,
C.
Barraud
,
L.
Petti
,
C.
Zysset
,
L.
Büthe
,
K.
Ensslin
, and
G.
Troester
,
ACS Nano
7
,
8809
(
2013
);
[PubMed]
H.
Fang
,
S.
Chuang
,
T. C.
Chang
,
K.
Takei
,
T.
Takahashi
, and
A.
Javey
,
Nano Lett.
12
(
7
),
3788
(
2012
).
[PubMed]
17.
Y.
Wu
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
D. B.
Farmer
,
Y.
Zhu
,
A. A.
Bol
,
C.
Dimitrakopoulos
,
W.
Zhu
,
F.
Xia
,
P.
Avouris
, and
Y. M.
Lin
,
Nano Lett.
12
(
6
),
3062
(
2012
);
[PubMed]
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
(
11
),
699
(
2012
).
[PubMed]
18.
N.
Münzenrieder
,
L.
Petti
,
C.
Zysset
,
T.
Kinkeldei
,
G. A.
Salvatore
, and
G.
Tröster
,
IEEE Trans. Electron Devices
60
(
9
),
2815
(
2013
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4905015 for more information about the TFT AC and DC characteristics and the influence of mechanical strain.
20.
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Thin Solid Films
520
(
10
),
3778
(
2012
).
21.
N.
Münzenrieder
,
L.
Petti
,
C.
Zysset
,
G. A.
Salvatore
,
T.
Kinkeldei
,
C.
Perumal
,
C.
Carta
,
F.
Ellinger
, and
G.
Tröster
,
IEEE Int. Electron Devices Meet.
2012
,
5.2.1
.
22.
E. N.
Cho
,
J. H.
Kang
, and
I.
Yun
,
Curr. Appl. Phys.
11
(
4
),
1015
(
2011
).
23.
Y.
Xu
,
C.
Liu
,
W.
Scheideler
,
P.
Darmawan
,
S. L.
Li
,
F.
Balestra
,
G.
Ghibaudo
, and
K.
Tsukagoshi
,
Org. Electron.
14
(
7
),
1797
(
2013
).
24.
N.
Münzenrieder
,
K. H.
Cherenack
, and
G.
Tröster
,
IEEE Trans. Electron Devices
58
(
7
),
2041
(
2011
).
25.
Y.
Shimura
,
K.
Nomura
,
H.
Yanagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Thin Solid Films
516
(
17
),
5899
(
2008
).
26.
B.
Du Ahn
,
H. S.
Shin
,
H. J.
Kim
,
J. S.
Park
, and
J. K.
Jeong
,
Appl. Phys. Lett.
93
(
20
),
203506
(
2008
).
27.
K. H.
Choi
and
H. K.
Kim
,
Appl. Phys. Lett.
102
(
5
),
052103
(
2013
).
28.
W. S.
Kim
,
Y. K.
Moon
,
K. T.
Kim
,
J. H.
Lee
,
B. D.
Ahn
, and
J. W.
Park
,
Thin Solid Films
518
(
22
),
6357
(
2010
).
29.
M.
Marinkovic
,
D.
Belaineh
,
V.
Wagner
, and
D.
Knipp
,
Adv. Mater.
24
(
29
),
4005
(
2012
).
30.
H.
Wang
,
L.
Li
,
Z. Y.
Ji
,
C. Y.
Lu
,
J. W.
Guo
,
L.
Wang
, and
M.
Liu
,
IEEE Electron Device Lett.
34
(
1
),
69
(
2013
).

Supplementary Material

You do not currently have access to this content.