Electron spin resonance (ESR) studies were carried out on the higher-Miller index (211)Si/SiO2 interface thermally grown in the temperature range Tox = 400–1066 °C to assess interface quality in terms of inherently incorporated point defects. This reveals the presence predominantly of two species of a Pb-type interface defect (interfacial Si dangling bond), which, based on pertinent ESR parameters, is typified as Pb0(211) variant, close to the Pb0 center observed in standard (100)Si/SiO2—known as utmost detrimental interface trap. Tox ≳ 750 °C is required to minimize the Pb0(211) defect density (∼4.2 × 1012 cm−2; optimized interface). The data clearly reflect the non-elemental nature of the (211)Si face as an average of (100) and (111) surfaces. It is found that in oxidizing (211)Si at Tox ≳ 750 °C, the optimum Si/SiO2 interface quality is retained for the two constituent low-index (100) and (111) faces separately, indicating firm anticipating power for higher-index Si/SiO2 interfaces in general. It implies that, as a whole, the quality of a thermal higher-index Si/SiO2 interface can never surmount that of the low-index (100)Si/SiO2 structure.

1.
S. H.
Vajargah
,
S.
Ghanad-Tavakoli
,
J. S.
Preston
,
G. A.
Botton
, and
R. N.
Kleiman
,
J. Appl. Phys.
112
,
093103
(
2012
).
2.
K.-C.
Kim
,
H. J.
Kim
,
S.-H.
Suh
,
M.
Carmody
,
S.
Sivananthan
, and
J.-S.
Kim
,
J. Electron. Mater.
39
,
863
(
2010
).
3.
V.
Schmidt
,
J. V.
Wittemann
,
S.
Senz
, and
U.
Gösele
,
Adv. Mater.
21
,
2681
(
2009
).
4.
E.
Meng
,
W.
Li
,
K.
Nakane
,
Y.
Shirahashi
,
Y.
Hayakawa
, and
H.
Tatsuoka
,
AIP Adv.
3
,
092107
(
2013
).
5.
E.
Korczynski
and
P.
Singer
,
Solid State Technol.
57
,
4
(
2014
).
6.
R.
Helms
and
E. H.
Poindexter
,
Rep. Prog. Phys.
57
,
791
(
1994
).
7.
A.
Stesmans
,
Phys. Rev. B
48
,
2418
(
1993
).
8.
E. H.
Poindexter
,
G. J.
Gerardi
,
M. E.
Rueckel
,
P. J.
Caplan
,
N. M.
Johnson
, and
D. K.
Biegelsen
,
J. Appl. Phys.
56
,
2844
(
1984
);
P. K.
Hurley
,
A.
Stesmans
,
V. V.
Afanas'ev
,
B. J.
O'Sullivan
, and
E.
O'Callaghan
,
J. Appl. Phys.
93
,
3971
(
2003
).
9.
K.
Keunen
,
A.
Stesmans
, and
V. V.
Afanas'ev
,
Phys. Rev. B
84
,
085329
(
2011
).
10.
See, e.g.,
A.
Stesmans
and
V. V.
Afanas'ev
, in
Characterization of Semiconductor Heterostructures and Nanostructures
, edited by
C.
Lamberti
and
G.
Agostini
(
Elsevier
,
Oxford
,
2013
), p.
685
.
11.
P. V.
Gray
and
D. M.
Brown
,
Appl. Phys. Lett.
8
,
31
(
1966
);
E.
Arnold
,
J.
Ladell
, and
G.
Abowitz
,
Appl. Phys. Lett.
13
,
413
(
1968
);
L.
Dobaczewski
,
S.
Bernardini
,
P.
Kruszewski
,
P. K.
Hurley
,
V. P.
Markevich
,
I. D.
Hawkins
, and
A. R.
Peaker
,
Appl. Phys. Lett.
92
,
242104
(
2008
);
N. H.
Thoan
,
K.
Keunen
,
V. V.
Afanas'ev
, and
A.
Stesmans
,
J. Appl. Phys.
109
,
013710
(
2011
).
12.
A.
Stesmans
,
Semicond. Sci. Technol.
4
,
1000
(
1989
).
13.
D.
Pierreux
and
A.
Stesmans
,
Phys. Rev. B
66
,
165320
(
2002
).
14.
E. H.
Poindexter
,
P. J.
Caplan
,
B. E.
Deal
, and
R. R.
Razouk
,
J. Appl. Phys.
52
,
879
(
1981
).
15.
Y. Y.
Kim
and
P. M.
Lenahan
,
J. Appl. Phys.
64
,
3551
(
1988
).
16.
O. V.
Aleksandrov
and
A. I.
Dusj
,
Semiconductors
43
,
1373
(
2009
).
17.
E. A.
Lewis
and
E. A.
Irene
,
J. Electrochem. Soc.
134
,
2332
(
1987
).
18.
E. A.
Irene
,
H. Z.
Massoud
, and
E.
Tierney
,
J. Electrochem. Soc.
133
,
1253
(
1986
).
19.
S.
Ogata
,
S.
Ohno
,
M.
Tanaka
,
T.
Mori
, and
T.
Horikawa
,
Appl. Phys. Lett.
98
,
092906
(
2011
).
20.
A.
Stesmans
and
V. V.
Afanas'ev
,
J. Appl. Phys.
83
,
2449
(
1998
).
21.
A.
Stesmans
and
V. V.
Afanas'ev
,
Phys. Rev. B
54
,
R11129
(
1996
).
22.
W.
Futako
,
M.
Mizuochi
, and
S.
Yamasaki
,
Phys. Rev. Lett.
92
,
105505
(
2004
).
23.
E. H.
Poindexter
,
Semicond. Sci. Technol.
4
,
961
(
1989
).
24.
A.
Stesmans
,
M.
Jivanescu
,
S.
Godefroo
, and
M.
Zacharias
,
Appl. Phys. Lett.
93
,
023123
(
2008
).
You do not currently have access to this content.