We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×105 laser cooled and trapped 87Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

1.
A. L.
Schawlow
and
C. H.
Townes
, “
Infrared and optical masers
,”
Phys. Rev.
112
,
1940
1949
(
1958
).
2.
T. D.
Ladd
,
F.
Jelezko
,
R.
Laflamme
,
Y.
Nakamura
,
C.
Monroe
, and
J. L.
O'Brien
, “
Quantum computers
,”
Nature
464
,
45
53
(
2010
).
3.
B.
Yan
,
S. A.
Moses
,
B.
Gadway
,
J. P.
Covey
,
K. R. A.
Hazzard
,
A. M.
Rey
,
D. S.
Jin
, and
J.
Ye
, “
Observation of dipolar spin-exchange interactions with lattice-confined polar molecules
,”
Nature
501
,
521
(
2013
).
4.
M.
Foss-Feig
,
A. J.
Daley
,
J. K.
Thompson
, and
A. M.
Rey
, “
Steady-state many-body entanglement of hot reactive fermions
,”
Phys. Rev. Lett.
109
,
230501
(
2012
).
5.
H.
Krauter
,
C. A.
Muschik
,
K.
Jensen
,
W.
Wasilewski
,
J. M.
Petersen
,
J. I.
Cirac
, and
E. S.
Polzik
, “
Entanglement generated by dissipation and steady state entanglement of two macroscopic objects
,”
Phys. Rev. Lett.
107
,
080503
(
2011
).
6.
F.
Reiter
,
L.
Tornberg
,
G.
Johansson
, and
A. S.
Sørensen
, “
Steady-state entanglement of two superconducting qubits engineered by dissipation
,”
Phys. Rev. A
88
,
032317
(
2013
).
7.
M.
Hosseini
,
B.
Sparkes
,
G.
Campbell
,
P.
Lam
, and
B.
Buchler
, “
High efficiency coherent optical memory with warm rubidium vapour
,”
Nat. Commun.
2
,
174
(
2011
).
8.
I. I.
Rabi
,
S.
Millman
,
P.
Kusch
, and
J. R.
Zacharias
, “
The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of
Li36,Li37, and F919,”
Phys. Rev.
55
,
526
535
(
1939
).
9.
B. J.
Bloom
,
T. L.
Nicholson
,
J. R.
Williams
,
S. L.
Campbell
,
M.
Bishof
,
X.
Zhang
,
W.
Zhang
,
S. L.
Bromley
, and
J.
Ye
, “
An optical lattice clock with accuracy and stability at the 10−18 level
,”
Nature
506
,
71
75
(
2014
).
10.
N. F.
Ramsey
, “
A molecular beam resonance method with separated oscillating fields
,”
Phys. Rev.
78
,
695
699
(
1950
).
11.
N.
Hinkley
,
J. A.
Sherman
,
N. B.
Phillips
,
M.
Schioppo
,
N. D.
Lemke
,
K.
Beloy
,
M.
Pizzocaro
,
C. W.
Oates
, and
A. D.
Ludlow
, “
An atomic clock with 1018 instability
,”
Science
341
,
1215
1218
(
2013
).
12.
Z.
Chen
,
J. G.
Bohnet
,
S. R.
Sankar
,
J.
Dai
, and
J. K.
Thompson
, “
Conditional spin squeezing of a large ensemble via the vacuum rabi splitting
,”
Phys. Rev. Lett.
106
,
133601
133604
(
2011
).
13.
R.
Tycko
,
H. M.
Cho
,
E.
Schneider
, and
A.
Pines
, “
Composite pulses without phase distortion
,”
J. Magn. Reson., Ser. A
61
,
90
101
(
1985
).
14.
S.
Wimperis
, “
Broadband, narrowband, and passband composite pulses for use in advanced nmr experiments
,”
J. Magn. Reson., Ser. A
109
,
221
231
(
1994
).
15.
N.
Khaneja
,
T.
Reiss
,
C.
Kehlet
,
T.
Schulte-Herbrüggen
, and
S. J.
Glaser
, “
Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms
,”
J. Magn. Reson., Ser. A
172
,
296
305
(
2005
).
16.
J.-S.
Li
and
N.
Khaneja
, “
Control of inhomogeneous quantum ensembles
,”
Phys. Rev. A
73
,
030302
(
2006
).
17.
G. S.
Uhrig
, “
Keeping a quantum bit alive by optimized π-pulse sequences
,”
Phys. Rev. Lett.
98
,
100504
(
2007
).
18.
M.
Steffen
and
R. H.
Koch
, “
Shaped pulses for quantum computing
,”
Phys. Rev. A
75
,
062326
(
2007
).
19.
W.
Rakreungdet
,
J. H.
Lee
,
K. F.
Lee
,
B. E.
Mischuck
,
E.
Montano
, and
P. S.
Jessen
, “
Accurate microwave control and real-time diagnostics of neutral-atom qubits
,”
Phys. Rev. A
79
,
022316
(
2009
).
20.
B. T.
Torosov
and
N. V.
Vitanov
, “
Smooth composite pulses for high-fidelity quantum information processing
,”
Phys. Rev. A
83
,
053420
(
2011
).
21.
E. L.
Hahn
, “
Spin echoes
,”
Phys. Rev.
80
,
580
594
(
1950
).
22.
S.
Meiboom
and
D.
Gill
, “
Modified spin-echo method for measuring nuclear relaxation times
,”
Rev. Sci. Instrum.
29
,
688
691
(
1958
).
23.
H. Y.
Carr
and
E. M.
Purcell
, “
Effects of diffusion on free precession in nuclear magnetic resonance experiments
,”
Phys. Rev.
94
,
630
638
(
1954
).
24.
J. G.
Bohnet
,
K. C.
Cox
,
M. A.
Norcia
,
J. M.
Weiner
,
Z.
Chen
, and
J. K.
Thompson
, “
Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit
,”
Nat. Photonics
8
,
731
736
(
2014
).
25.
B.
Lücke
,
J.
Peise
,
G.
Vitagliano
,
J.
Arlt
,
L.
Santos
,
G.
Tóth
, and
C.
Klempt
, “
Detecting multiparticle entanglement of dicke states
,”
Phys. Rev. Lett.
112
,
155304
(
2014
).
26.
C. D.
Hamley
,
C. S.
Gerving
,
T. M.
Hoang
,
E. M.
Bookjans
, and
M. S.
Chapman
, “
Spin-nematic squeezed vacuum in a quantum gas
,”
Nat. Phys.
8
,
305
308
(
2012
).
27.
T.
Monz
,
P.
Schindler
,
J. T.
Barreiro
,
M.
Chwalla
,
D.
Nigg
,
W. A.
Coish
,
M.
Harlander
,
W.
Hänsel
,
M.
Hennrich
, and
R.
Blatt
, “
14-qubit entanglement: Creation and coherence
,”
Phys. Rev. Lett.
106
,
130506
(
2011
).
28.
I. D.
Leroux
,
M. H.
Schleier-Smith
, and
V.
Vuletić
, “
Implementation of cavity squeezing of a collective atomic spin
,”
Phys. Rev. Lett.
104
,
073602
(
2010
).
29.

A different measurement sequence (Ref. 24) that avoids any rotations achieved a comparable amount of directly observed spin squeezing in the same system without relying on dephased rotations, but only by sacrificing a factor of two in fundamental measurement resolution. This additional factor of two was not realized in this work due to the probe laser's frequency noise coupling more strongly into the measurement sequence of Fig. 3.

30.
Z.
Chen
,
J. G.
Bohnet
,
J. M.
Weiner
, and
J. K.
Thompson
, “
General formalism for evaluating the impact of phase noise on bloch vector rotations
,”
Phys. Rev. A
86
,
032313
(
2012
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4905148 for an experimental demonstration showing reduction of intentionally applied rotation errors as well as an analysis of the effect of dephased rotations on quantum noise.
32.

The noise sources contributing to R in our experiment are characterized in the supplementary material of Ref. [24]. The primary source of noise which correlates Rbck and Rrot is noise from state-changing transitions. This causes a negligible over-estimation of rotation-added noise at high Mp in the sequence of Fig. 3(b) by a value approximately 27 dB below the projection noise level.

Supplementary Material

You do not currently have access to this content.