Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

1.
J.
Fan
,
H.
Li
,
J.
Jiang
,
L. K. Y.
So
,
Y. W.
Lam
, and
P. K.
Chu
,
Small
4
,
1058
(
2008
).
2.
J.
Botsoa
,
V.
Lysenko
,
A.
Géloën
,
O.
Marty
,
J. M.
Bluet
, and
G.
Guillot
,
Appl. Phys. Lett.
92
,
173902
(
2008
).
3.
B.
Somogyi
and
A.
Gali
,
J. Phys.: Condens. Matter
26
,
143202
(
2014
).
4.
A. P.
Magyar
,
I.
Aharonovich
,
M.
Baram
, and
E. L.
Hu
,
Nano Lett.
13
,
1210
(
2013
).
5.
A. M.
Derfus
,
W. C. W.
Chan
, and
S. N.
Bhatia
,
Nano Lett.
4
,
11
(
2004
).
6.
C.
Eggeling
,
J.
Widengren
,
R.
Rigler
, and
C. A. M.
Seidel
,
Anal. Chem.
70
,
2651
(
1998
).
7.
D.
Beke
,
Z.
Szekrényes
,
I.
Balogh
,
Z.
Czigány
,
K.
Kamarás
, and
A.
Gali
,
J. Mater. Res.
28
,
44
(
2012
).
8.
J. B.
Rao
,
G. J.
Catherin
,
I. N.
Murthy
,
D. V.
Rao
, and
B. N.
Raju
,
Int. J. Eng. Sci. Technol.
3
,
82
(
2011
), available at http://www.ajol.info/index.php/ijest/article/view/68544.
9.
B.
Mognetti
,
A.
Barberis
,
S.
Marino
,
F.
Di Carlo
,
V.
Lysenko
,
O.
Marty
, and
A.
Géloën
,
J. Nanosci. Nanotechnol.
10
,
7971
(
2010
).
10.
J.
Fan
,
H.
Li
,
J.
Wang
, and
M.
Xiao
,
Appl. Phys. Lett.
101
,
131906
(
2012
).
11.
A. M.
Smith
,
M. C.
Mancini
, and
S.
Nie
,
Nat. Nanotechnol.
4
,
710
(
2009
).
12.
B.
Somogyi
,
V.
Zólyomi
, and
A.
Gali
,
Nanoscale
4
,
7720
(
2012
).
13.
D.
Riedel
,
F.
Fuchs
,
H.
Kraus
,
S.
Väth
,
A.
Sperlich
,
V.
Dyakonov
,
A.
Soltamova
,
P.
Baranov
,
V.
Ilyin
, and
G. V.
Astakhov
,
Phys. Rev. Lett.
109
,
226402
(
2012
).
14.
S.
Castelletto
,
B. C.
Johnson
, and
A.
Boretti
,
Adv. Opt. Mater.
1
,
609
(
2013
).
15.
K.
Welsher
,
Z.
Liu
,
S. P.
Sherlock
,
J. T.
Robinson
,
Z.
Chen
,
D.
Daranciang
, and
H.
Dai
,
Nat. Nanotechnol.
4
,
773
(
2009
).
16.
G.
Hong
,
J. C.
Lee
,
J. T.
Robinson
,
U.
Raaz
,
L.
Xie
,
N. F.
Huang
,
J. P.
Cooke
, and
H.
Dai
,
Nat. Med.
18
,
1841
(
2012
).
17.
P. G.
Baranov
,
A. A.
Soltamova
,
D. O.
Tolmachev
,
N. G.
Romanov
,
R. A.
Babunts
,
F. M.
Shakhov
,
S. V.
Kidalov
,
A. Y.
Vul
,
G. V.
Mamin
,
S. B.
Orlinskii
 et al,
Small
7
,
1533
(
2011
).
18.
F.
Neugart
,
A.
Zappe
,
F.
Jelezko
,
C.
Tietz
,
J. P.
Boudou
,
A.
Krueger
, and
J.
Wrachtrup
,
Nano Lett.
7
,
3588
(
2007
).
19.
Y.-R.
Chang
,
H.-Y.
Lee
,
K.
Chen
,
C.-C.
Chang
,
D.-S.
Tsai
,
C.-C.
Fu
,
T.-S.
Lim
,
Y.-K.
Tzeng
,
C.-Y.
Fang
,
C.-C.
Han
 et al,
Nat. Nanotechnol.
3
,
284
(
2008
).
20.
N.
Mohan
,
C.-S.
Chen
,
H.-H.
Hsieh
,
Y.-C.
Wu
, and
H.-C.
Chang
,
Nano Lett.
10
,
3692
(
2010
).
21.
L. P.
McGuinness
,
Y.
Yan
,
A.
Stacey
,
D. A.
Simpson
,
L. T.
Hall
,
D.
Maclaurin
,
S.
Prawer
,
P.
Mulvaney
,
J.
Wrachtrup
,
F.
Caruso
 et al,
Nat. Nanotechnol.
6
,
358
(
2011
).
22.
V. R.
Horowitz
,
B. J.
Alemán
,
D. J.
Christle
,
A. N.
Cleland
, and
D. D.
Awschalom
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
13493
(
2012
).
23.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
,
M.
Kubo
,
H. J.
Noh
,
P. K.
Lo
,
H.
Park
, and
M. D.
Lukin
,
Nature
500
,
54
(
2013
).
24.
E.
Neu
,
C.
Arend
,
E.
Gross
,
F.
Guldner
,
C.
Hepp
,
D.
Steinmetz
,
E.
Zscherpel
,
S.
Ghodbane
,
H.
Sternschulte
,
D.
Steinmüller-Nethl
 et al,
Appl. Phys. Lett.
98
,
243107
(
2011
).
25.
I. I.
Vlasov
,
A. A.
Shiryaev
,
T.
Rendler
,
S.
Steinert
,
S.-Y.
Lee
,
D.
Antonov
,
M.
Vörös
,
F.
Jelezko
,
A. V.
Fisenko
,
L. F.
Semjonova
 et al,
Nat. Nanotechnol.
9
,
54
(
2013
).
26.

We note that in case of diamond the silicon-vacancy is an extrinsic defect, consisting of a silicon atom and a vacancy near by. In case of SiC, the silicon vacancy is an intrinsic defect, which is the absence of a silicon atom in the lattice site. In order to avoid confusion we use different notations, i.e., SiV in nanodiamonds and VSi in SiC NCs.

27.
T. C.
Hain
,
F.
Fuchs
,
V. A.
Soltamov
,
P. G.
Baranov
,
G. V.
Astakhov
,
T.
Hertel
, and
V.
Dyakonov
,
J. Appl. Phys.
115
,
133508
(
2014
).
28.
A. L.
Falk
,
B. B.
Buckley
,
G.
Calusine
,
W. F.
Koehl
,
V. V.
Dobrovitski
,
A.
Politi
,
C. A.
Zorman
,
P. X. L.
Feng
, and
D. D.
Awschalom
,
Nat. Commun.
4
,
1819
(
2013
).
29.
H.
Kraus
,
V. A.
Soltamov
,
D.
Riedel
,
S.
Väth
,
F.
Fuchs
,
A.
Sperlich
,
P. G.
Baranov
,
V.
Dyakonov
, and
G. V.
Astakhov
,
Nat. Phys.
10
,
157
(
2014
).
30.
H.
Kraus
,
V. A.
Soltamov
,
F.
Fuchs
,
D.
Simin
,
A.
Sperlich
,
P. G.
Baranov
,
G. V.
Astakhov
, and
V.
Dyakonov
,
Sci. Rep.
4
,
5303
(
2014
).
31.
A. L.
Falk
,
P. V.
Klimov
,
B. B.
Buckley
,
V.
Ivády
,
I. A.
Abrikosov
,
G.
Calusine
,
W. F.
Koehl
,
A.
Gali
, and
D. D.
Awschalom
,
Phys. Rev. Lett.
112
,
187601
(
2014
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4904807 for the details of the neutron irradiation, fabrication, and optical characterization of silicon carbide nanocrystals.
33.
S.
Heyer
,
W.
Janssen
,
S.
Turner
,
Y.-G.
Lu
,
W. S.
Yeap
,
J.
Verbeeck
,
K.
Haenen
, and
A.
Krueger
,
ACS Nano
8
,
5757
(
2014
).
34.
F.
Fuchs
,
V. A.
Soltamov
,
S.
Väth
,
P. G.
Baranov
,
E. N.
Mokhov
,
G. V.
Astakhov
, and
V.
Dyakonov
,
Sci. Rep.
3
,
1637
(
2013
).
35.
M.
Wagner
,
B.
Magnusson
,
W.
Chen
,
E.
Janzén
,
E.
Sörman
,
C.
Hallin
, and
J.
Lindström
,
Phys. Rev. B
62
,
16555
(
2000
).

Supplementary Material

You do not currently have access to this content.