Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

1.
G. W.
Mcclure
,
Appl. Phys. Lett.
2
(
12
),
233
234
(
1963
).
2.
M. Y.
Pustylnik
,
L.
Hou
,
A. V.
Ivlev
,
L. M.
Vasilyak
,
L.
Couedel
,
H. M.
Thomas
,
G. E.
Morfill
, and
V. E.
Fortov
,
Phys. Rev. E
87
(
6
),
063105
(
2013
).
3.
J.
Park
,
I.
Henins
,
H. W.
Herrmann
,
G. S.
Selwyn
,
J. Y.
Jeong
,
R. F.
Hicks
,
D.
Shim
, and
C. S.
Chang
,
Appl. Phys. Lett.
76
(
3
),
288
290
(
2000
).
4.
D. S.
Antao
,
D. A.
Staack
,
A.
Fridman
, and
B.
Farouk
,
Plasma Sources Sci. Technol.
18
(
3
),
035016
(
2009
).
5.
L. F.
Dong
,
Y. Z.
Zhang
,
W. Y.
Liu
,
L.
Yang
, and
J. Y.
Chen
,
Appl. Phys. Lett.
94
(
9
),
091502
(
2009
).
6.
A.
Blais
,
P.
Proulx
, and
M. I.
Boulos
,
J. Phys. D: Appl. Phys.
36
(
5
),
488
496
(
2003
).
7.
A.
Schutze
,
J. Y.
Jeong
,
S. E.
Babayan
,
J.
Park
,
G. S.
Selwyn
, and
R. F.
Hicks
,
IEEE Trans. Plasma Sci.
26
(
6
),
1685
1694
(
1998
).
8.
F.
Richard
,
J. M.
Cormier
,
S.
Pellerin
, and
J.
Chapelle
,
J. Appl. Phys.
79
(
5
),
2245
2250
(
1996
).
9.
V.
Dalaine
,
J. M.
Cormier
, and
P.
Lefaucheux
,
J. Appl. Phys.
83
(
5
),
2435
2441
(
1998
).
10.
A.
Fridman
,
S.
Nester
,
L. A.
Kennedy
,
A.
Saveliev
, and
O.
Mutaf-Yardimci
,
Prog. Energy Combust. Sci.
25
(
2
),
211
231
(
1999
).
11.
O.
Mutaf-Yardimci
,
A. V.
Saveliev
,
A. A.
Fridman
, and
L. A.
Kennedy
,
J. Appl. Phys.
87
(
4
),
1632
1641
(
2000
).
12.
S.
Pellerin
,
F.
Richard
,
J.
Chapelle
,
J. M.
Cormier
, and
K.
Musiol
,
J. Phys. D: Appl. Phys.
33
(
19
),
2407
2419
(
2000
).
13.
X.
Tu
,
L.
Yu
,
J. H.
Yan
,
K. F.
Cen
, and
B. G.
Cheron
,
Phys. Plasmas
16
(
11
),
113506
(
2009
).
14.
Z. B.
Feng
,
N.
Saeki
,
T.
Kuroki
,
M.
Tahara
, and
M.
Okubo
,
Appl. Phys. Lett.
101
(
4
),
041602
(
2012
).
15.
Z.
Bo
,
E. K.
Wu
,
J. H.
Yan
,
Y.
Chi
, and
K. F.
Cen
,
Rev. Sci. Instrum.
84
(
1
),
016105
(
2013
).
16.
A.
Larsson
,
L.
Adelöw
,
M.
Elfsberg
, and
T.
Hurtig
,
IEEE Trans. Plasma Sci.
42
(
10
),
3186
3190
(
2014
).
17.
C.
Zhang
,
T.
Shao
,
J. Y.
Xu
,
H.
Ma
,
L. W.
Duan
,
C. Y.
Ren
, and
P.
Yan
,
IEEE Trans. Plasma Sci.
40
(
11
),
2843
2849
(
2012
).
18.
J. J.
Zhu
,
Z. W.
Sun
,
Z. S.
Li
,
A.
Ehn
,
M.
Alden
,
M.
Salewski
,
F.
Leipold
, and
Y.
Kusano
,
J. Phys. D: Appl. Phys.
47
(
29
),
295203
(
2014
).
19.
Z. W.
Sun
,
J. J.
Zhu
,
Z. S.
Li
,
M.
Alden
,
F.
Leipold
,
M.
Salewski
, and
Y.
Kusano
,
Opt. Express
21
(
5
),
6028
6044
(
2013
).
20.
Y.
Kusano
,
B. F.
Sorensen
,
T. L.
Andersen
,
H. L.
Toftegaard
,
F.
Leipold
,
M.
Salewski
,
Z. W.
Sun
,
J. J.
Zhu
,
Z. S.
Li
, and
M.
Alden
,
J. Phys. D: Appl. Phys.
46
(
13
),
135203
(
2013
).
21.
Y. D.
Korolev
,
O. B.
Frants
,
V. G.
Geyman
,
N. V.
Landl
, and
V. S.
Kasyanov
,
IEEE Trans. Plasma Sci.
39
(
12
),
3319
3325
(
2011
).
22.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4903781 for a movie showing the dynamics of the gliding arc as well as the simultaneously recorded current and voltage waveforms.

Supplementary Material

You do not currently have access to this content.