The optical absorption in a homogeneous and non-dispersive slab is governed by the well-known Fabry-Perot resonances. We have found that below the lowest order Fabry-Perot resonance, there is another absorption maximum due to the zero frequency mode whose peak frequency is given not by the real part of the complex resonance frequency, as it is the case for all other resonances, but by the imaginary part. This result is of interest, among other applications, for ultra thin solar cells, as tuning the zero frequency mode peak with the maximum of solar irradiance results in an increased efficiency.

1.
L.
Yang
,
Y.
Xuan
, and
J.
Tan
,
Opt. Express
19
,
A1165
(
2011
).
2.
Z.
Yu
,
A.
Raman
, and
S.
Fan
,
Proc. Natl. Acad. Sci. USA
107
,
17491
(
2010
).
3.
M. A.
Kats
,
R.
Blanchard
,
P.
Genevet
, and
F.
Capasso
,
Nat. Mater.
12
,
20
(
2013
).
4.
M. A.
Kats
and
F.
Capasso
,
Appl. Phys. Lett.
105
,
131108
(
2014
).
5.
C.
Hägglund
,
S. P.
Apell
, and
B.
Kasemo
,
Nano Lett.
10
,
3135
(
2010
).
6.
J. R.
Piper
and
S.
Fan
,
ACS Photonics
1
,
347
(
2014
).
7.
E.
Popov
, in
Progress in Optics
, edited by
E.
Wolf
(
Elsevier
,
1993
), Vol.
31
, pp.
139
187
.
8.
J.
Xia
,
A. K.
Jordan
, and
J. A.
Kong
,
J. Opt. Soc. Am. A
9
,
740
(
1992
).
9.
K. L.
Kliewer
and
R.
Fuchs
,
Phys. Rev.
144
,
495
(
1966
).
10.
K. L.
Kliewer
and
R.
Fuchs
,
Phys. Rev.
150
,
573
(
1966
).
11.
R.
Fuchs
,
K. L.
Kliewer
, and
W. J.
Pardee
,
Phy. Rev.
150
,
589
(
1966
).
12.
J. M.
Blatt
and
V. F.
Weisskopf
,
Theoretical Nuclear Physics
(
John Wiley & Sons, Inc.,
1952
).
13.
A. W.
Snyder
and
J. D.
Love
,
Optical Waveguide Theory
(
Chapman & Hall
,
1991
).
14.
K.
Inoue
and
K.
Ohtaka
,
Photonic crystals: Physics, Fabrication and Applications
(
Springer
,
2004
), Vol. 94.
15.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
2008
).
16.
B. R.
Johnson
,
J Opt. Soc. Am. A
10
,
343
(
1993
).
17.
P. T.
Kristensen
and
S.
Hughes
,
ACS Photonics
1
,
2
(
2014
).
18.
A.
Settimi
and
S.
Severini
,
J. Mod. Opt.
57
,
1513
(
2010
).
19.
Y.
Yu
and
L.
Cao
,
Opt. Express
20
,
13847
(
2012
).
20.
A.
Settimi
,
S.
Severini
, and
B. J.
Hoenders
,
J Opt. Soc. Am. B
26
,
876
(
2009
).
21.

The relation between tangent and natural log functions is: let a = tan z, then z = −i/2 ln[(i − a)/(i + a)].

22.
H. A.
Haus
,
Waves and Fields in Optoelectronics
(
Prentice-Hall, Inc.
,
Englewood Clifs, N.J.
,
1984
).
23.
S.
Fan
,
W.
Suh
, and
J. D.
Joannopoulos
,
J Opt. Soc. Am. A
20
,
569
(
2003
).
24.
P.
Fan
,
Z.
Yu
,
S.
Fan
, and
M. L.
Brongersma
,
Nat. Mater.
13
,
471
(
2014
).
25.
M.
Maksimovic
,
M.
Hammer
, and
E.
van Groesen
,
Opt. Commun.
281
,
1401
(
2008
).
26.
Q.
Bai
,
M.
Perrin
,
C.
Sauvan
,
J.-P.
Hugonin
, and
P.
Lalanne
,
Opt. Express
21
,
27371
(
2013
).
27.
C.
Sauvan
,
J. P.
Hugonin
,
I. S.
Maksymov
, and
P.
Lalanne
,
Phys. Rev. Lett.
110
,
237401
(
2013
).
28.
K. C.
Ho
,
P. T.
Leung
,
A.
Maassen van den Brink
, and
K.
Young
,
Phys. Rev. E
58
,
2965
(
1998
).
29.

The natural log must be approximated to its first order Taylor expansion: ln(x) ≈ (x − 1), valid only for 0 < x < 2.

30.
R.
Betancur
,
A.
Martnez-Otero
,
X.
Elias
,
P.
Romero-Gmez
,
S.
Colodrero
,
H.
Miguez
, and
J.
Martorell
,
Sol. Energy Mater. Sol. Cells
104
,
87
(
2012
).
31.
Y.
Park
,
E.
Drouard
,
O.
El Daif
,
X.
Letartre
,
P.
Viktorovitch
,
A.
Fave
,
A.
Kaminski
,
M.
Lemiti
, and
C.
Seassal
,
Opt. Express
17
,
14312
(
2009
).
32.
J.
Buencuerpo
,
L. E.
Munioz-Camuniez
,
M. L.
Dotor
, and
P. A.
Postigo
,
Opt. Express
20
,
A452
(
2012
).
You do not currently have access to this content.