A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

1.
H.
Helmholtz
,
Nature
19
,
117
118
(
1878
).
2.
G.
Békésy
,
Experiments in Hearing
(
McGraw
,
New York
,
1960
).
3.
T.
Gold
,
Proc. R. Soc. B
135
,
492
498
(
1948
).
4.
I. J.
Russell
and
P. M.
Sellick
,
Nature
267
,
858
860
(
1977
).
5.
T.
Reichenbach
and
A. J.
Hudspeth
,
Phys. Rev. Lett.
105
,
118102
(
2010
).
6.
J. S.
Lamb
and
R. S.
Chadwick
,
Phys. Rev. Lett.
107
,
088101
(
2011
).
8.
Y. H.
Fu
,
A. Q.
Liu
,
W. M.
Zhu
,
X. M.
Zhang
,
D. P.
Tsai
,
J. B.
Zhang
,
T.
Mei
,
J. F.
Tao
,
H. C.
Guo
,
X. H.
Zhang
 et al.,
Adv. Funct. Mater.
21
,
3589
3594
(
2011
).
9.
Y.
Lai
,
Y.
Wu
,
P.
Sheng
, and
Z.
Zhang
,
Nat. Mater.
10
,
620
624
(
2011
).
10.
Y.
Cheng
,
J.
Xu
, and
X.
Liu
,
Appl. Phys. Lett.
92
,
051913
(
2008
).
11.
Z.
Chang
and
G.
Hu
,
Appl. Phys. Lett.
101
,
054102
(
2012
).
12.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
101
,
204301
(
2008
).
13.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
15.
16.
17.
S. T.
Wang
,
L.
Feng
, and
L.
Jiang
,
Adv. Mater.
18
,
767
(
2006
).
18.
X. F.
Gao
and
L.
Jiang
,
Nature
432
,
36
(
2004
).
19.
A. R.
Park
and
C. R.
Lawrence
,
Nature
414
,
33
(
2001
).
20.
21.
P. W. K.
Rothemund
,
Nature
440
,
297
(
2006
).
22.
G.
Chin
,
R.
Coontz
, and
L.
Helmuth
,
Science
303
,
781
(
2004
).
23.
J.
Li
and
L.
Bai
,
Nat. Nanotechnol.
7
,
773
774
(
2012
).
24.
J.
Lee
,
S.
Peng
,
D.
Yang
,
Y. H.
Roh
,
H.
Funabashi
,
N.
Park
,
E. J.
Rice
,
L.
Chen
,
R.
Long
,
M.
Wu
, and
D.
Luo
,
Nat. Nanotechnol.
7
,
816
820
(
2012
).
25.
K. L.
Young
,
M. B.
Ross
,
M. G.
Blaber
,
M.
Rycenga
,
M. R.
Jones
,
C.
Zhang
,
A. J.
Senesi
,
B.
Lee
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Adv. Mater.
26
,
653
659
(
2014
).
26.
P.
Martin
,
D. A.
Mehta
, and
J. A.
Hudspeth
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
12026
12031
(
2000
).
27.
G. W.
Milton
and
J. R.
Willis
,
Proc. R. Soc. A
463
,
855
880
(
2007
).
28.
L. C.
Peterson
and
B. P.
Bogert
,
J. Acoust. Soc. Am.
22
,
369
381
(
1950
).
29.
M.
Kwacz
,
P.
Marek
,
P.
Borkowski
, and
M.
Mrówka
,
Biomech. Model. Mechanobiol.
12
,
1243
1261
(
2013
).
30.
L. A.
Tabera
and
C. R.
Steele
,
J. Acoust. Soc. Am.
70
,
426
436
(
1981
).
31.
P. J.
Kolston
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
3676
3681
(
1999
).
You do not currently have access to this content.