Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a “dotted” single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

1.
M.
Hoummady
,
A.
Campitelli
, and
W.
Wlodarski
,
Smart Mater. Struct.
6
(
6
),
647
(
1997
).
2.
G.
Kovacs
and
A.
Venema
,
Appl. Phys. Lett.
61
(
6
),
639
641
(
1992
).
3.
K.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation
(
Springer
,
2000
).
4.
E. N. M. J.
Vellekoop
,
J. C.
Haartsen
, and
A.
Venema
, “A Monolithic SAW Physical-Electronic System for Sensors,” in
IEEE 1987 Ultrasonics Symposium
(
IEEE
,
1987
), pp.
641
644
.
5.
S.
Li
,
Y.
Su
,
Y.
Wan
, and
Z.
Tang
, in
International Conference on Sensing Technology
(
IEEE
,
Wellington
,
2013
), pp.
62
66
.
6.
Y.-T.
Shen
,
C.-L.
Huang
,
R.
Chen
, and
L.
Wu
,
Sens. Actuators, B
107
(
1
),
283
290
(
2005
).
7.
C. J.
Zhou
,
Y.
Yang
,
H. L.
Cai
,
T. L.
Ren
,
M. S.
Chan
, and
C. Y.
Yang
,
IEEE Electron Device Lett.
34
(
12
),
1572
1574
(
2013
).
8.
D. B.
Armstrong
, U.S. patent 3,894,286 A (8th July
1975
).
9.
N.
Dewan
,
S. P.
Singh
,
K.
Sreenivas
, and
V.
Gupta
,
Sens. Actuators, B
124
(
2
),
329
335
(
2007
).
10.
H.
Tarbague
,
J.-L.
Lachaud
,
S.
Destor
,
L.
Velutini
,
J.-P.
Pillot
,
B.
Bennetau
,
D.
Moynet
,
D.
Rebière
,
J.
Pistre
, and
C.
Dejous
,
ECS Trans.
23
(
1
),
319
325
(
2009
).
11.
T.
Kodama
,
H.
Kawabata
,
Y.
Yasuhara
, and
H.
Sato
, “Design of Low-Loss SAW Filters Employing Distributed Acoustic Reflection Transducers,” in
IEEE 1986 Ultrasonics Symposium
(
IEEE
,
1986
), pp.
59
64
.
12.
A.
Safari
and
E. K.
Akdogan
,
Piezoelectric and Acoustic Materials for Transducer Applications
(
Springer
,
2010
).
13.
E. M.
Garber
,
D. S.
Yip
, and
D. K.
Henderson
, in
1994 IEEE Proceedings of the Ultrasonics and Symposium
(
IEEE
,
1994
), Vol.
1
, pp.
7
12
.
14.
L.
Garcia-Gancedo
,
J.
Pedros
,
Z.
Zhu
,
A. J.
Flewitt
,
W. I.
Milne
,
J. K.
Luo
, and
C. J. B.
Ford
,
J. Appl. Phys.
112
(
1
),
014907
(
2012
).
15.
P.
Tournois
and
C.
Lardat
,
IEEE Trans. Sonics Ultrason.
16
(
3
),
107
116
(
1969
).
16.
D. P.
Morgan
,
Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing
, 2nd ed. (
Academic Press
,
Oxford, UK
,
2007
).
You do not currently have access to this content.