Vanadium dioxide (VO2) is a correlated electron material which undergoes an insulator-metal transition proximal to room temperature. The large change of optical properties across this phase transition is promising for tunable optical and optoelectronic devices especially at infrared frequencies. We demonstrate the ability to locally tune the optical properties on the micron scale through a simple design consisting of two electrodes patterned on a VO2 thin film. By current injection between the electrodes, a localized conducting path (metallic phase) can be formed within the insulating background. The width of the conducting path can be controlled by varying the applied current. Fourier transform infrared imaging shows that this current-modulated reflectance changes significantly over a distance on the order of the wavelength in the mid-infrared spectral range.

1.
F. J.
Morin
,
Phys. Rev. Lett.
3
(
1
),
34
(
1959
).
2.
C.
Batista
,
R.
Ribeiro
, and
V.
Teixeira
,
Nanoscale Res. Lett.
6
(
1
),
301
(
2011
).
3.
F.
Guinneton
,
L.
Sauques
,
J.-C.
Valmalette
,
F.
Cros
, and
J.-R.
Gavarri
,
Thin Solid Films
446
(
2
),
287
(
2004
).
4.
M. A.
Kats
,
D.
Sharma
,
J.
Lin
,
P.
Genevet
,
R.
Blanchard
,
Z.
Yang
,
M. M.
Qazilbash
,
D. N.
Basov
,
S.
Ramanathan
, and
F.
Capasso
,
Appl. Phys. Lett.
101
(
22
),
22101
(
2012
).
5.
M. A.
Kats
,
R.
Blanchard
,
S.
Zhang
,
P.
Genevet
,
C.
Ko
,
S.
Ramanathan
, and
F.
Capasso
,
Phys. Rev. X
3
(
4
),
041004
(
2013
).
6.
M. A.
Kats
,
R.
Blanchard
,
P.
Genevet
,
Z.
Yang
,
M. M.
Qazilbash
,
D. N.
Basov
,
S.
Ramanathan
, and
F.
Capasso
,
Opt. Lett.
38
(
3
),
368
(
2013
).
7.
M. M.
Qazilbash
,
M.
Brehm
,
B.-G.
Chae
,
P. C.
Ho
,
G. O.
Andreev
,
B.-J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H.-T.
Kim
, and
D. N.
Basov
,
Science
318
(
5857
),
1750
(
2007
).
8.
D.
Ruzmetov
and
S.
Ramanathan
, in
Thin Film Metal-Oxides
, edited by
Shriram Ramanathan
(
Springer
,
USA
,
2010
), p.
51
.
9.
Y.
Zhou
,
X.
Chen
,
C.
Ko
,
Z.
Yang
,
C.
Mouli
, and
S.
Ramanathan
,
IEEE Electron Device Lett.
34
(
2
),
220
(
2013
).
10.
C. N.
Berglund
and
H. J.
Guggenheim
,
Phys. Rev.
185
(
3
),
1022
(
1969
).
11.
M. D.
Goldflam
,
T.
Driscoll
,
D.
Barnas
,
O.
Khatib
,
M.
Royal
,
N. Marie
Jokerst
,
D. R.
Smith
,
B.-J.
Kim
,
G.
Seo
,
H.-T.
Kim
, and
D. N.
Basov
,
Appl. Phys. Lett.
102
(
22
),
224103
(
2013
).
12.
M. D.
Goldflam
,
T.
Driscoll
,
B.
Chapler
,
O.
Khatib
,
N. M.
Jokerst
,
S.
Palit
,
D. R.
Smith
,
B.-J.
Kim
,
G.
Seo
,
H.-T.
Kim
,
M. D.
Ventra
, and
D. N.
Basov
,
Appl. Phys. Lett.
99
(
4
),
044103
(
2011
).
13.
See supplementary material at http://dx.doi.org/10.1063/1.4902924 for details of resistance measurements and optical spectra of the device before and after the phase transition.
14.
F. A.
Chudnovskii
,
L. L.
Odynets
,
A. L.
Pergament
, and
G. B.
Stefanovich
,
J. Solid State Chem.
122
(
1
),
95
(
1996
).
15.
Y.
Zhao
,
J.
Hao
,
C.
Chen
, and
Z.
Fan
,
J. Phys.: Condens. Matter
24
(
3
),
035601
(
2012
).
16.
A.
Crunteanu
,
J.
Givernaud
,
J.
Leroy
,
D.
Mardivirin
,
C.
Champeaux
,
J.-C.
Orlianges
,
A.
Catherinot
, and
P.
Blondy
,
Sci. Technol. Adv. Mater.
11
(
6
),
065002
(
2010
).
17.
P.
Schilbe
,
Physica B
316–317
(
0
),
600
(
2002
).
18.
H.-T.
Kim
,
B.-G.
Chae
,
D.-H.
Youn
,
G.
Kim
,
K.-Y.
Kang
,
S.-J.
Lee
,
K.
Kim
, and
Y.-S.
Lim
,
Appl. Phys. Lett.
86
(
24
),
242101
(
2005
).

Supplementary Material

You do not currently have access to this content.