The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

1.
A. M.
Ionescu
and
H.
Riel
,
Nature
479
,
329
(
2011
).
2.
H.
Lu
and
A.
Seabaugh
,
IEEE J. Electron Devices Soc.
2
(
4
),
44
49
(
2014
).
3.
D. K.
Mohata
,
D.
Pawlik
,
L.
Liu
,
S.
Mookerjea
,
V.
Saripalli
,
S.
Rommel
, and
S.
Datta
, in
68th Device Res. Conf.
(
IEEE
,
2010
), pp.
103
104
.
4.
Q.
Smets
,
D.
Verreck
,
A. S.
Verhulst
,
R.
Rooyackers
,
C.
Merckling
,
M.
Van De Put
,
E.
Simoen
,
W.
Vandervorst
,
N.
Collaert
,
V. Y.
Thean
,
B.
Sorée
,
G.
Groeseneken
, and
M. M.
Heyns
,
J. Appl. Phys.
115
,
184503
(
2014
).
5.
W. G.
Vandenberghe
,
B.
Soree
,
W.
Magnus
,
G.
Groeseneken
, and
M. V.
Fischetti
,
Appl. Phys. Lett.
98
,
143503
(
2011
).
6.
R.
Li
,
Y.
Lu
,
S. D.
Chae
,
G.
Zhou
,
Q.
Liu
,
C.
Chen
,
M. Shahriar
Rahman
,
T.
Vasen
,
Q.
Zhang
,
P.
Fay
,
T.
Kosel
,
M.
Wistey
,
H. G.
Xing
,
S.
Koswatta
, and
A.
Seabaugh
,
Phys. Status Solidi
9
,
389
(
2012
).
7.
A. W.
Dey
,
J.
Svensson
,
M.
Ek
,
E.
Lind
,
C.
Thelander
, and
L.-E.
Wernersson
,
Nano Lett.
13
,
5919
(
2013
).
8.
D.
Verreck
,
A. S.
Verhulst
,
K.-h.
Kao
,
W. G.
Vandenberghe
,
K. De
Meyer
, and
G.
Groeseneken
,
IEEE Trans. Electron Devices
60
,
2128
(
2013
).
9.
A.
Goetzberger
,
J. Appl. Phys.
38
,
4582
(
1967
).
10.
Q.
Smets
,
A. S.
Verhulst
,
D. H.-C.
Lin
,
D.
Verreck
,
C.
Merckling
,
S. E.
Kazzi
,
K.
Martens
,
J.-P.
Raskin
,
V.-Y.
Thean
, and
M. M.
Heyns
, in
72nd Device Res. Conf.
(
IEEE
,
2014
), Vol.
50
, pp.
63
64
.
11.
L. K.
Chu
,
C.
Merckling
,
A.
Alian
,
J.
Dekoster
,
J.
Kwo
,
M.
Hong
,
M.
Caymax
, and
M.
Heyns
,
Appl. Phys. Lett.
99
,
042908
(
2011
).
12.
S.
Kar
,
IEEE Trans. Electron Devices
50
,
2112
(
2003
).
13.
Synopsys, “Sentaurus Device H-2013.03.”
14.
E.
Zielinski
,
H.
Schweizer
,
K.
Streubel
,
H.
Eisele
, and
G.
Weimann
,
J. Appl. Phys.
59
,
2196
(
1986
).
15.
S.
Jain
and
D.
Roulston
,
Solid State Electron.
34
,
453
(
1991
).
16.
W.-S.
Cho
,
M.
Luisier
,
D.
Mohata
,
S.
Datta
,
D.
Pawlik
,
S. L.
Rommel
, and
G.
Klimeck
,
Appl. Phys. Lett.
100
,
063504
(
2012
).
17.
G.
Chindalore
,
S.
Hareland
,
S.
Jallepalli
,
A.
Tasch
,
C.
Maziar
,
V.
Chia
, and
S.
Smith
,
IEEE Electron Device Lett.
18
,
206
(
1997
).
18.
K.
Martens
,
C. O.
Chui
,
G.
Brammertz
,
B. De
Jaeger
,
D.
Kuzum
,
M.
Meuris
,
M.
Heyns
,
T.
Krishnamohan
,
K.
Saraswat
,
H. E.
Maes
, and
G.
Groeseneken
,
IEEE Trans. Electron Devices
55
,
547
(
2008
).
You do not currently have access to this content.