A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

1.
S.
Nishikawa
and
S.
Kikuchi
,
Nature
121
,
1019
(
1928
).
3.
T.
Hashizume
,
Q.-K.
Xue
,
A.
Ichimiya
, and
T.
Sakurai
,
Phys. Rev. B
51
,
4200
(
1995
).
4.
P. R.
Pukite
,
J. M. V.
Hove
, and
P. I.
Cohen
,
Appl. Phys. Lett.
44
,
456
(
1984
).
5.
J. H.
Neave
,
B. A.
Joyce
,
P. J.
Dobson
, and
N.
Norton
,
Appl. Phys. A
31
,
1
(
1983
).
6.
J.
Sudijono
,
M. D.
Johnson
,
C. W.
Snyder
,
M. B.
Elowitz
, and
B. G.
Orr
,
Phys. Rev. Lett.
69
,
2811
(
1992
).
7.
W.
Braun
,
B.
Jenichen
,
V. M.
Kaganer
,
A. S.
Shtukenberg
,
L.
Däweritz
, and
K. H.
Ploog
,
J. Cryst. Growth.
251
,
56
(
2003
).
8.
J. J.
de Miguel
,
A.
Cebollada
,
J. M.
Gallego
,
J.
Ferron
, and
S.
Ferrer
,
J. Cryst. Growth
88
,
442
(
1988
).
9.
M.
Blanc
,
K.
Kuhne
,
V.
Marsico
, and
K.
Kern
,
Surf. Sci.
414
,
L964
(
1998
).
10.
Y.
Fujii
,
K.
Narumi
,
K.
Kimura
,
M.
Mannami
,
T.
Hashimoto
,
K.
Ogawa
,
F.
Ohtani
,
T.
Yoshida
, and
M.
Asari
,
Appl. Phys. Lett.
63
,
2070
(
1993
).
11.
P. M.
DeLuca
,
K. C.
Ruthe
, and
S. A.
Barnett
,
Phys. Rev. Lett.
86
,
260
(
2001
).
12.
Y. Y.
Fei
,
X. D.
Zhu
,
L. F.
Liu
,
H. B.
Lu
,
Z. H.
Chen
, and
G. Z.
Yang
,
Phys. Rev. B
69
,
233405
(
2004
).
13.
A.
Schüller
,
S.
Wethekam
, and
H.
Winter
,
Phys. Rev. Lett.
98
,
16103
(
2007
).
14.
P.
Rousseau
,
H.
Khemliche
,
A. G.
Borisov
, and
P.
Roncin
,
Phys. Rev. Lett.
98
,
016104
(
2007
).
16.
A.
Schüller
and
H.
Winter
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
628
(
2009
).
17.
H.
Khemliche
,
P.
Rousseau
,
P.
Roncin
,
V. H.
Etgens
, and
F.
Finocchi
,
Appl. Phys. Lett.
95
,
151901
(
2009
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4890121 for the growth movie corresponding to data shown in Figure 2, and for GIFAD data taken at 0.5ML/s, typical RHEED data and GIFAD images showing change in reconstruction during growth.
19.
M.
Mannami
,
Y.
Fujii
, and
K.
Kimura
,
Surf. Sci.
204
,
213
(
1988
).
20.
D.
Danailov
,
P.
Keblinski
, and
D. J.
O'Connor
,
Nucl. Instrum. Methods Phys. Res., Sect. B
193
,
544
(
2002
).
21.
R.
Pfandzelter
,
Phys. Rev. B
57
,
15496
(
1998
).
22.
23.
G. R.
Bell
,
T. S.
Jones
,
J. H.
Neave
, and
B. A.
Joyce
,
Surf. Sci.
458
,
247
(
2000
).
24.
P. I.
Cohen
,
G. S.
Petrich
,
P. R.
Pukite
,
G. J.
Whaley
, and
A. S.
Arrott
,
Surf. Sci.
216
,
222
(
1989
).
25.
P. J.
Dobson
,
B. A.
Joyce
, and
J. H.
Neave
,
J. Cryst. Growth
81
,
1
(
1987
).
26.
P.
Kratzer
and
M.
Scheffler
,
Phys. Rev. Lett.
88
,
036102
(
2002
).
27.
F.
Bastiman
,
A. G.
Cullis
, and
M.
Hopkinson
,
Surf. Sci.
603
,
2398
(
2009
).
28.
H.
Ishizaki
,
T.
Akiyama
,
K.
Nakamura
,
K.
Shiraishi
,
A.
Taguchi
, and
T.
Ito
,
Appl. Surf. Sci.
244
,
186
(
2005
).
29.
H.
Nörenberg
and
N.
Koguchi
,
Surf. Sci.
296
,
199
(
1993
).

Supplementary Material

You do not currently have access to this content.