Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10−4 with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.

1.
R.
Vincent
and
P. A.
Midgley
,
Ultramicroscopy
53
,
271
(
1994
).
2.
A. S.
Eggeman
and
P. A.
Midgley
, in
Advances in Imaging and Electron Physics
, edited by
P. W.
Hawkes
(
Elsevier Academic Press Inc
,
San Diego
,
2012
), Vol. 170.
3.
E. F.
Rauch
,
J.
Portillo
,
S.
Nicolopoulos
,
D.
Bultreys
,
S.
Rouvimov
, and
P.
Moeck
,
Z. Kristallogr.
225
,
103
(
2010
).
4.
L.
Palatinus
,
D.
Jacob
,
P.
Cuvillier
,
M.
Klementov
,
W.
Sinkler
, and
L. D.
Marks
,
Acta Crystallogr., Sect. A
69
,
171
(
2013
).
5.
J. L.
Rouviere
,
A.
Béché
,
Y.
Martin
,
T.
Denneulin
, and
D.
Cooper
,
Appl. Phys. Lett.
103
,
241913
(
2013
).
6.
L.
Liao
and
L. D.
Marks
,
Ultramicroscopy
117
,
1
6
(
2012
).
7.
S.
Nicolopoulos
,
D.
Bultreys
, and
E.
Rauch
, “
Methods and Devices for High Throughput Crystal Structure Analysis by Electron Diffraction
,” patent No. WO/2010/052289 (15 May
2010
).
8.
Beche
,
A.
,
J. L.
Rouviere
,
L.
Clement
, and
J. M.
Hartmann
,
Appl. Phys. Lett.
95
,
123114
(
2009
).
9.
F O.
Faugeras
,
Three-Dimensional Computer Vision
(
MIT press
,
1993
).
10.
E.
Peli
,
J. Opt. Soc. Am. A
7
,
2032
2040
(
1990
).
11.
F. H.
Baumann
,
Appl. Phys. Lett.
104
,
262102
(
2014
).
12.
K.
Müller
,
A.
Rosenauer
,
M.
Schowalter
,
J.
Zweck
,
R.
Fritz
, and
K.
Volz
,
Microsc. Microanal.: Official J. Microsc. Soc. Am., Microbeam Anal. Soc., Microsc. Soc. Can.
18
,
995
(
2012
).
13.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
,
Nat. Methods
9
,
671
675
(
2012
).
14.
S.
Bolte
and
F. P.
Cordelières
,
J. Microsc.
224
(
3
),
213
232
(
2006
).
15.
O.
Gyuhwan
and
S.
Lee
,
Pattern Recognit. Lett.
23
,
1179
(
2002
).
16.
J. L.
Rouvière
and
E.
Sarigiannidou
,
Ultramicroscopy
106
,
1
17
(
2005
).
17.
A.
Béché
,
J. L.
Rouvière
,
J. P.
Barnes
, and
D.
Cooper
,
Ultramicroscopy
131
,
10
(
2013
).
18.
J. L.
Rouviere
, in
Microscopy of Semiconducting Materials 2007
, Springer Proceedings in Physics 120, edited by
A. G.
Cullis
and
P. A.
Midgley
(
Springer Netherlands
,
2008
), pp.
199
202
.
19.
R.
Cipro
,
T.
Baron
,
M.
Martin
,
J.
Moeyaert
,
S.
David
,
V.
Gorbenko
,
F.
Bassani
,
Y.
Bogumilowicz
,
J. P.
Barnes
,
N.
Rochat
,
V.
Loup
,
C.
Vizioz
,
N.
Allouti
,
N.
Chauvin
,
X. Y.
Bao
,
Z.
Ye
,
J. B.
Pin
, and
E.
Sanchez
,
Appl. Phys. Lett.
104
,
262103
(
2014
).
20.
S.
Takagi
,
S. H.
Kim
,
M.
Yokoyama
,
R.
Zhang
,
N.
Taoka
,
Y.
Urabe
,
T.
Yasuda
,
H.
Yamada
,
O.
Ichikawa
,
N.
Fukuhara
, et al,
Solid-State Electron.
88
,
2
8
(
2013
).
21.
L.
Czornomaz
,
M. El
Kazzi
,
M.
Hopstaken
,
D.
Caimi
,
P.
Mächler
,
C.
Rossel
,
M.
Bjoerk
,
C.
Marchiori
,
H.
Siegwart
, and
J.
Fompeyrine
,
Solid-State Electron.
74
,
71
76
(
2012
).
22.
Y. B.
Bolkhovityanov
and
O. P.
Pchelyakov
,
Open Nanosci. J.
3
,
20
(
2009
).
You do not currently have access to this content.