Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H+, H2+, and H3+ ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

1.
D.
Haberer
,
C. E.
Giusca
,
Y.
Wang
,
H.
Sachdev
,
A. V.
Fedorov
,
M.
Farjam
,
S. A.
Jafari
,
D. V.
Vyalikh
,
D.
Usachov
,
X.
Liu
,
U.
Treske
,
M.
Grobosch
,
O.
Vilkov
,
V. K.
Adamchuk
,
S.
Irle
,
S. R.
Silva
,
M.
Knupfer
,
B.
Buchner
, and
A.
Gruneis
,
Adv. Mater.
23
(
39
),
4497
(
2011
).
2.
R.
Jayasingha
,
A.
Sherehiy
,
S. Y.
Wu
, and
G. U.
Sumanasekera
,
Nano Lett.
13
(
11
),
5098
(
2013
).
3.
J.
Balakrishnan
,
G. K. W.
Koon
,
M.
Jaiswal
,
A. H. C.
Neto
, and
B.
Özyilmaz
,
Nat. Phys.
9
(
5
),
284
(
2013
).
4.
R.
Balog
,
B.
Jorgensen
,
L.
Nilsson
,
M.
Andersen
,
E.
Rienks
,
M.
Bianchi
,
M.
Fanetti
,
E.
Laegsgaard
,
A.
Baraldi
,
S.
Lizzit
,
Z.
Sljivancanin
,
F.
Besenbacher
,
B.
Hammer
,
T. G.
Pedersen
,
P.
Hofmann
, and
L.
Hornekaer
,
Nat. Mater.
9
(
4
),
315
(
2010
).
5.
G.
Diankov
,
M.
Neumann
, and
D.
Goldhaber-Gordon
,
ACS Nano
7
(
2
),
1324
(
2013
).
6.
B.
Eren
,
D.
Hug
,
L.
Marot
,
R.
Pawlak
,
M.
Kisiel
,
R.
Steiner
,
D. M.
Zumbuhl
, and
E.
Meyer
,
Beilstein J. Nanotechnol.
3
,
852
(
2012
).
7.
D. C.
Elias
,
R. R.
Nair
,
T. M.
Mohiuddin
,
S. V.
Morozov
,
P.
Blake
,
M. P.
Halsall
,
A. C.
Ferrari
,
D. W.
Boukhvalov
,
M. I.
Katsnelson
,
A. K.
Geim
, and
K. S.
Novoselov
,
Science
323
(
5914
),
610
(
2009
).
8.
L.
Xie
,
L.
Jiao
, and
H.
Dai
,
J. Am. Chem. Soc.
132
(
42
),
14751
(
2010
).
9.
S.
Goler
,
C.
Coletti
,
V.
Tozzini
,
V.
Piazza
,
T.
Mashoff
,
F.
Beltram
,
V.
Pellegrini
, and
S.
Heun
,
J. Phys. Chem. C
117
(
22
),
11506
(
2013
).
10.
Q. H.
Wang
,
Z.
Jin
,
K. K.
Kim
,
A. J.
Hilmer
,
G. L.
Paulus
,
C. J.
Shih
,
M. H.
Ham
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Kong
,
P.
Jarillo-Herrero
, and
M. S.
Strano
,
Nat. Chem.
4
(
9
),
724
(
2012
).
11.
Z.
Luo
,
T.
Yu
,
K. J.
Kim
,
Z.
Ni
,
Y.
You
,
S.
Lim
,
Z.
Shen
,
S.
Wang
, and
J.
Lin
,
ACS Nano
3
(
7
),
1781
(
2009
).
12.
Z.
Luo
,
J.
Shang
,
S.
Lim
,
D.
Li
,
Q.
Xiong
,
Z.
Shen
,
J.
Lin
, and
T.
Yu
,
Appl. Phys. Lett.
97
(
23
),
233111
(
2010
).
13.
M.
Wojtaszek
,
N.
Tombros
,
A.
Caretta
,
P. H. M.
van Loosdrecht
, and
B. J.
van Wees
,
J. Appl. Phys.
110
(
6
),
063715
(
2011
).
14.
A.
Felten
,
A.
Eckmann
,
J. J.
Pireaux
,
R.
Krupke
, and
C.
Casiraghi
,
Nanotechnology
24
(
35
),
355705
(
2013
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4901226 for detailed plans of the plasma chamber; Raman spectra of hydrogenated graphene before and after annealing; I(D)/I(G) curves at different plasma conditions; ion energy distributions for increasing plasma power; and I(D)/I(G) curves at different plasma conditions.
16.
L. G.
Cancado
,
A.
Jorio
,
E. H.
Ferreira
,
F.
Stavale
,
C. A.
Achete
,
R. B.
Capaz
,
M. V.
Moutinho
,
A.
Lombardo
,
T. S.
Kulmala
, and
A. C.
Ferrari
,
Nano Lett.
11
(
8
),
3190
(
2011
).
17.
A.
Eckmann
,
A.
Felten
,
A.
Mishchenko
,
L.
Britnell
,
R.
Krupke
,
K. S.
Novoselov
, and
C.
Casiraghi
,
Nano Lett.
12
(
8
),
3925
(
2012
).
18.
A.
Eckmann
,
A.
Felten
,
I.
Verzhbitskiy
,
R.
Davey
, and
C.
Casiraghi
,
Phys. Rev. B
88
(
3
),
035426
(
2013
).
19.
A.
Felten
,
B. S.
Flavel
,
L.
Britnell
,
A.
Eckmann
,
P.
Louette
,
J. J.
Pireaux
,
M.
Hirtz
,
R.
Krupke
, and
C.
Casiraghi
,
Small
9
(
4
),
631
(
2013
).
20.
M.
Jaiswal
,
C. H.
Lim
,
Q.
Bao
,
C. T.
Toh
,
K. P.
Loh
, and
B.
Ozyilmaz
,
ACS Nano
5
(
2
),
888
(
2011
).
21.
Z.
Luo
,
T.
Yu
,
Z.
Ni
,
S.
Lim
,
H.
Hu
,
J.
Shang
,
L.
Liu
,
Z.
Shen
, and
J.
Lin
,
J. Phys. Chem. C
115
(
5
),
1422
(
2011
).
22.
N.
Škoro
,
N.
Puač
,
S.
Lazović
,
U.
Cvelbar
,
G.
Kokkoris
, and
E.
Gogolides
,
J. Phys. D: Appl. Phys.
46
(
47
),
475206
(
2013
).
23.
M.
Andrieux
,
J. M.
Badie
,
M.
Ducarroir
, and
C.
Bisch
,
J. Phys. D: Appl. Phys.
31
,
1457
(
1998
).
24.
C.
Barbeau
and
J.
Jolly
,
J. Phys. D: Appl. Phys.
23
,
1168
(
1990
).
25.
A.
Ito
,
Y.
Wang
,
S.
Irle
,
K.
Morokuma
, and
H.
Nakamura
,
J. Nucl. Mater.
390–391
,
183
(
2009
).
26.
E.
Despiau-Pujo
,
A.
Davydova
,
G.
Cunge
,
L.
Delfour
,
L.
Magaud
, and
D. B.
Graves
,
J. Appl. Phys.
113
(
11
),
114302
(
2013
).
27.
R. C.
Ehemann
,
P. S.
Krstic
,
J.
Dadras
,
P. R.
Kent
, and
J.
Jakowski
,
Nanoscale Res. Lett.
7
,
198
(
2012
).

Supplementary Material

You do not currently have access to this content.