A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104 s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

1.
I. G.
Baek
,
C. J.
Park
,
H.
Ju
,
D. J.
Seong
,
H. S.
Ahn
,
J. H.
Kim
,
M. K.
Yang
,
S. H.
Song
,
E. M.
Kim
,
S. O.
Park
,
C. H.
Park
,
C. W.
Song
,
G. T.
Jeong
,
S.
Choi
,
H. K.
Kang
, and
C.
Chung
,
Tech. Dig. - Int. Electron Devices Meet.
2011
,
737
.
2.
H. S.
Yoon
,
I. G.
Baek
,
J.
Zhao
,
H.
Sim
,
M. Y.
Park
,
H.
Lee
,
G.-H.
Oh
,
J. C.
Shin
,
I.-S.
Yeo
, and
U-I.
Chung
, “Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications,”
VLSI Technol. Symp.
2009
,
26
. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5200621&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5176122%2F5200578%2F05200621.pdf%3Farnumber%3D5200621
3.
B.
Wu
,
A.
Kumar
, and
S.
Pamarthy
,
J. Appl. Phys.
108
,
051101
(
2010
).
4.
A.
Chen
,
IEEE Trans. Electron Devices
60
,
1318
(
2013
).
5.
W. C.
Chien
,
F. M.
Lee
,
Y. Y.
Lin
,
M. H.
Lee
,
S. H.
Chen
,
C. C.
Hsieh
,
E. K.
Lai
,
H. H.
Hui
,
Y. K.
Huang
,
C. C.
Yu
,
C. F.
Chen
,
H. L.
Lung
,
K. Y.
Hsieh
, and
L.
Chih-Yuan
,
VLSI Technol. Symp.
2012
,
153
.
6.
S.
Yu
,
H. Y.
Chen
,
B.
Gao
,
J.
Kang
, and
H. S. P.
Wong
,
ACS Nano
7
,
2320
(
2013
).
7.
M. E.
Day
,
M.
Delfino
,
J. A.
Fair
, and
W.
Tsai
,
Thin Solid Films
254
,
285
(
1995
).
8.
K.
Yokota
,
K.
Nakamura
,
T.
Kasuya
,
K.
Mukai
, and
M.
Ohnishi
,
J. Phys. D: Appl. Phys.
37
,
1095
(
2004
).
9.
J. P.
Gambino
and
E. G.
Colgan
,
Mater. Chem. Phys.
52
,
99
(
1998
).
10.
K. C.
Cadien
,
S.
Sivaram
, and
C. D.
Reintsema
,
J. Vac. Sci. Technol. A
4
,
739
(
1986
).
11.
G. J.
Yong
,
R. M.
Kolagani
,
S.
Adhikari
,
W.
Vanderlinde
,
Y.
Liang
,
K.
Muramatsu
, and
S.
Friedrich
,
J. Appl. Phys.
108
,
033502
(
2010
).
12.
D.
Suh
,
H. S.
Kim
, and
J. Y.
Kang
,
Appl. Phys. Lett.
76
,
3697
(
2000
).
13.
H. Y.
Chen
,
S. M.
Yu
,
B.
Gao
,
P.
Huang
,
J. F.
Kang
, and
H.-S. P.
Wong
,
Tech. Dig. - Int. Electron Devices Meet.
2012
,
497
.
14.
H. Y.
Peng
,
Y. F.
Li
,
W. N.
Lin
,
Y. Z.
Wang
,
X. Y.
Gao
, and
T.
Wu
,
Sci. Rep.
2
,
442
(
2012
).
15.
H. Y.
Peng
,
L.
Pu
,
J. C.
Wu
,
D.
Cha
,
J. H.
Hong
,
W. N.
Lin
,
Y. Y.
Li
,
J. F.
Ding
,
A.
David
,
K.
Li
, and
T.
Wu
,
APL Mater.
1
,
052106
(
2013
).
16.
L.
Shi
,
D. S.
Shang
,
Y. S.
Chen
,
J.
Wang
,
J. R.
Sun
, and
B. G.
Shen
,
J. Phys. D Appl. Phys.
44
,
455305
(
2011
).
You do not currently have access to this content.