Low-temperature induced diffusive to ballistic transport in aligned double walled carbon nanotubes (DWNT) is reported. This is evidenced by a crossover of the imaginary (reactive) component of the alternating current impedance being greater than the real (resistive) component, which happens in the range of 9 GHz–1.5 GHz at temperatures77 K and 4 K from which we estimate a long lifetime of 17 ps and 106 ps in DWNTs, respectively. By simulating the measured scattering parameters of a few aligned DWNTs over a wide temperature range, we show that this observation is strongly influenced by the electrode–DWNT coupling strength.

1.
J. M.
Bonard
,
T.
Stora
,
J. P.
Salvetat
,
F.
Maier
,
T.
Stoeckli
,
C.
Duschl
,
L.
Forro
,
W. A. de
Heer
, and
A.
Chatelaine
,
Adv. Mater.
9
,
827
(
1997
).
2.
P. X.
Hou
,
S.
Bai
,
Q. H.
Yang
,
C.
Lui
, and
H. M.
Cheng
,
Carbon
40
,
81
(
2002
).
3.
P.
Poncharal
,
C.
Berger
,
Y.
Yi
,
Z. L.
Wang
, and
W. A. de
Heer
,
J. Phys. Chem. B
106
,
12104
(
2002
).
4.
S.
Fratini
and
F.
Guinea
,
Phys. Rev. B
77
,
195415
(
2008
).
5.
C. L.
Pint
,
Y. Q.
Xu
,
E.
Morosan
, and
R. H.
Hauge
,
Appl. Phys. Lett.
94
,
182107
(
2009
).
6.
G.
Chimowa
,
M.
Sendova
,
E.
Flahaut
,
D.
Churochkin
, and
S.
Bhattacharyya
,
J. Appl. Phys.
110
,
123708
(
2011
).
7.
S.
Krishnan
,
H.
Yilmaz
,
R.
Vadapoo
, and
C.
Marin
,
Appl. Phys. Lett.
97
,
163107
(
2010
).
8.
T.
Shimada
and
T.
Sugai
,
Appl. Phys. Lett.
84
,
2412
(
2004
).
9.
S.
Pacchini
,
E.
Flahaut
,
N.
Fabre
,
V.
Conedera
,
F.
Mesnilgrente
,
F.
Coccetti
,
M.
Dragon
, and
R.
Plana
,
Int. J. Microwave Wireless Tech.
2
,
471
(
2010
).
10.
X.
He
,
N.
Fujimura
,
J. M.
Lloyd
,
K. J.
Erickson
,
A. A.
Talin
,
Q.
Zhang
,
W.
Gao
,
Q.
Jiang
,
Y.
Kawano
,
R. H.
Hauge
 et al,
Nano Lett.
14
,
3953
(
2014
).
11.
C.
Zhang
,
K.
Bets
,
S. S.
Lee
,
Z.
Sun
,
F.
Mirri
,
V. L.
Colvin
,
B. I.
Yakobson
,
J. M.
Tour
, and
R. H.
Hauge
,
ACS Nano
6
,
6023
(
2012
).
12.
P. J.
Burke
,
IEEE Trans. Nanotechnol.
1
,
129
(
2002
).
13.
S.
Kang
,
P. J.
Burke
,
L. N.
Pfeiffer
, and
K. W.
West
,
Solid State Electron.
48
,
2013
(
2004
).
14.
S.
Datta
,
Electrical Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, UK
,
1995
).
15.
E.
Flahaut
,
R.
Bacsa
,
A.
Peigney
, and
Ch.
Laurent
,
Chem. Commun. (Cambridge)
12
,
1442
(
2003
).
16.
F.
Seichepine
,
S.
Salomon
,
M.
Collet
,
S.
Guillon
,
L.
Nicu
,
G.
Larrieu
,
E.
Flahhaut
, and
C.
Vieu
,
Nanotechnology
23
,
095303
(
2012
).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4901025E-APPLAB-105-073444 for finer experimental details and error analysis.
18.
G.
Chimowa
and
S.
Bhattacharyya
,
AIP Adv.
4
,
087136
(
2014
).
19.
Q.
Liang
,
J. D.
Cressler
,
G.
Niu
,
Y.
Lu
,
G.
Freeman
,
D. C.
Ahlgen
,
R. M.
Malladi
,
K.
Newton
, and
D. L.
Harame
,
IEEE Trans. Microwave Theory Tech.
51
,
2165
(
2003
).
20.
D. M.
Pozar
,
Microwave Engineering
, 4th ed. (
John Wiley & Sons Inc
,
1998
).
21.
G.
Cuniberti
,
M.
Sassetti
, and
B.
Kramer
,
Phys. Rev. B
57
,
1515
(
1998
).
22.
G.
Chimowa
, “
Dynamic electrical Transport in carbon nanotubes and nanodiamond films
,” Ph.D. thesis (University of the Witwatersrand, Johannesburg, South Africa,
2014
).
23.
T.
Yamamoto
,
K.
Sasaoka
, and
S.
Watanabe
,
Phys. Rev. B
82
,
205404
(
2010
).
24.
M.
Tsutsui
,
K.
Kuno
,
S.
Kurokwa
, and
A.
Sakai
,
e-J. Surf. Sci. Nanotech.
5
,
12
(
2007
).
25.
V. K.
Ksenevich
,
N. I.
Gorbachuk
,
N. A.
Poklonski
,
V. A.
Samuilov
,
M. E.
Kozlov
, and
A. D.
Wieck
,
Fullerenes, Nanotubes, Carbon Nanostruct.
20
,
434
(
2012
).
26.
L.
Gomez-Rojas
,
S.
Bhattacharyya
,
E.
Mendoza
,
D. C.
Cox
,
J. M.
Rosolen
, and
S. R. P.
Silva
,
Nano Lett.
7
,
2672
(
2007
).

Supplementary Material

You do not currently have access to this content.