Focused electron beam induced deposition as a direct-write approach possesses great potential to meet the demands for superconducting nanostructure fabrication especially regarding its 3D patterning capabilities combined with the high resolution in the nanometer regime. So far, however, it was not possible to fabricate superconducting structures with this technique. In this work, we present a lead-based superconductor prepared by focused electron beam induced deposition by dissociation of the precursor tetraethyllead. The as-grown structures exhibit metallic behavior and a minimum resistivity in the normal state of ρ = 16 μΩcm at T = 9 K followed by a superconducting transition at Tc = 7.2 K.

1.
K. Y.
Arutyunov
,
D. S.
Golubev
, and
A. D.
Zaikin
, “
Superconductivity in one dimension
,”
Phys. Rep.
464
,
1
70
(
2008
).
2.
C.
Granata
,
E.
Esposito
,
A.
Vettoliere
,
L.
Petti
, and
M.
Russo
, “
An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications
,”
Nanotechnology
19
,
275501
(
2008
).
3.
J.
Clarke
and
F. K.
Wilhelm
, “
Superconducting quantum bits
,”
Nature
453
,
1031
1042
(
2008
).
4.
I.
Guillamon
,
H.
Suderow
,
S.
Vieira
,
A.
Fernandez-Pacheco
,
J.
Sese
,
R.
Cordoba
,
J. M. De
Teresa
, and
M. R.
Ibarra
, “
Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam
,”
New J. Phys.
10
,
093005
(
2008
).
5.
S.
Sangiao
,
J. M. De
Teresa
,
M. R.
Ibarra
,
I.
Guillamon
,
H.
Suderow
,
S.
Vieira
, and
L.
Morellon
, “
Andreev reflection under high magnetic fields in ferromagnet-superconductor nanocontacts
,”
Phys. Rev. B
84
,
233402
(
2011
).
6.
M.
Kompaniiets
,
O. V.
Dobrovolskiy
,
C.
Neetzel
,
F.
Porrati
,
J.
Brotz
,
W.
Ensinger
, and
M.
Huth
, “
Long-range superconducting proximity effect in polycrystalline Co nanowires
,”
Appl. Phys. Lett.
104
,
052603
(
2014
).
7.
M.
Kompaniiets
,
O. V.
Dobrovolskiy
,
C.
Neetzel
,
W.
Ensinger
, and
M.
Huth
, “
Superconducting proximity effect in crystalline Co and Cu nanowires
,”
J. Supercond. Novel Magn.
(published online).
8.
M.
Kompaniiets
,
O. V.
Dobrovolskiy
,
C.
Neetzel
,
E.
Begun
,
F.
Porrati
,
W.
Ensinger
, and
M.
Huth
, “
Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures
,”
J. Appl. Phys.
116
,
073906
(
2014
).
9.
E. S.
Sadki
,
S.
Ooi
, and
K.
Hirata
, “
Focused-ion-beam-induced deposition of superconducting nanowires
,”
Appl. Phys. Lett.
85
,
6206
6208
(
2004
).
10.
I. J.
Luxmoore
,
I. M.
Ross
,
A. G.
Cullis
,
P. W.
Fry
,
J.
Orr
,
P. D.
Buckle
, and
J. H.
Jefferson
, “
Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition
,”
Thin Solid Films
515
,
6791
6797
(
2007
).
11.
D.
Spoddig
,
K.
Schindler
,
P.
Rodiger
,
J.
Barzola-Quiquia
,
K.
Fritsch
,
H.
Mulders
, and
P.
Esquinazi
, “
Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope
,”
Nanotechnology
18
,
495202
(
2007
).
12.
J. M. De
Teresa
,
A.
Fernandez-Pacheco
,
R.
Cordoba
,
J.
Sese
,
R.
Ibarra
,
I.
Guillamon
,
H.
Suderow
, and
S.
Vieira
, “
Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in nanotechnology
,”
MRS Proc.
1180
,
1180-CC04-09
(
2009
).
13.
J.
Dai
,
K.
Onomitsu
,
R.
Kometani
,
Y.
Krockenberger
,
H.
Yamaguchi
,
S.
Ishihara
, and
S.
Warisawa
, “
Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6 and C14H10
,”
Jpn. J. Appl. Phys., Part 1
52
,
075001
(
2013
).
14.
P. M.
Weirich
,
C. H.
Schwalb
,
M.
Winhold
, and
M.
Huth
, “
Superconductivity in the system MoxCyGazOδ prepared by focused ion beam induced deposition
,”
J. Appl. Phys.
115
,
174315
(
2014
).
15.
P.
Dhakal
,
G.
McMahon
,
S.
Shepard
,
T.
Kirkpatrick
,
J. I.
Oh
, and
M. J.
Naughton
, “
Direct-write, focused ion beam-deposited, 7 K superconducting C-Ga-O nanowire
,”
Appl. Phys. Lett.
96
,
262511
(
2010
).
16.
N.
Mott
,
M.
Pepper
,
S.
Pollitt
,
R. H.
Wallis
, and
C. J.
Adkins
, “
The Anderson transition
,”
Proc. R. Soc. London, Ser. A
345
,
169
205
(
1975
).
17.
M. V.
Sadovskii
, “
Superconductivity and localization
,”
Phys. Rep.
282
,
225
348
(
1997
).
18.
K.
Makise
,
K.
Mitsuishi
,
M.
Shimojo
, and
B.
Shinozaki
, “
Microstructural analysis and transport properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition
,”
Sci. Rep.
4
,
5740
(
2014
).
19.
S.
Sengupta
,
C.
Li
,
C.
Baumier
,
A.
Kasumov
,
S.
Gueron
,
H.
Bouchiat
, and
F.
Fortuna
, “
Superconducting nanowires by electron-beam-induced deposition
,” e-print arXiv:1408.6958v1 (
2014
).
20.
J. P.
Franck
and
D. L.
Martin
, “
The superconducting transition temperature of lead
,”
Can. J, Phys.
39
,
1320
1329
(
1961
).
21.
R.
Eichele
,
W.
Kern
, and
R. P.
Huebener
, “
Superconductivity of thin-films of lead, indium, and tin prepared in the presence of oxygen
,”
Appl. Phys.
25
,
95
104
(
1981
).
22.
P. M.
Weirich
,
M.
Winhold
,
C. H.
Schwalb
, and
M.
Huth
, “
In situ growth optimization in focused electron-beam induced deposition
,”
Beilstein J. Nanotechnol.
4
,
919
926
(
2013
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4898819 for further measurements and analyses of samples 1 and 4 as well as resisitivity measurements of a PbxCyOδ sample fabricated with optimized deposition parameters.
24.
F.
Huebler
,
J. C.
Lemyre
,
D.
Beckmann
, and
H.
Von Lohneysen
, “
Charge imbalance in superconductors in the low-temperature limit
,”
Phys. Rev. B
81
,
184524
(
2010
).
25.
J. E.
Schirber
, “
Determination of the size of the “necks” in fermi surfaces of even-valence metals: Application to lead
,”
Phys. Rev.
131
,
2459
2462
(
1963
).
26.
M.
Kohler
, “
Zur magnetischen Widerstandsaenderung reiner Metalle
,”
Ann. Phys.
424
,
211
218
(
1938
).
27.
W. W.
Porterfield
,
Inorganic Chemistry
(
Academic Press
,
2013
).
28.
S.
Michotte
,
S.
Matefi-Tempfli
, and
L.
Piraux
, “
Current-voltage characteristics of Pb and Sn granular superconducting nanowires
,”
Appl. Phys. Lett.
82
,
4119
4121
(
2003
).
29.
R.
Sachser
,
F.
Porrati
,
C. H.
Schwalb
, and
M.
Huth
, “
Universal conductance correction in a tunable strongly coupled nanogranular metal
,”
Phys. Rev. Lett.
107
,
206803
(
2011
).
30.
L.
Serrano-Ramon
,
R.
Cordoba
,
L. A.
Rodriguez
,
C.
Magen
,
E.
Snoeck
,
C.
Gatel
,
I.
Serrano
,
M. R.
Ibarra
, and
J. M. De
Teresa
, “
Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition
,”
ACS Nano
5
,
7781
7787
(
2011
).

Supplementary Material

You do not currently have access to this content.