This paper proposes a non-wavelength-shortening-related critical dimension and pattern size reduction solution for the integrated circuit industry that entails generating strain on the substrate prior to lithography. Pattern size reduction of up to 49% was achieved regardless of shape, location, and size on the xy plane, and complete theoretical calculations and process steps are described in this paper. This technique can be applied to enhance pattern resolution by employing materials and process parameters already in use and, thus, to enhance the capability of outdated lithography facilities, enabling them to particularly support the manufacturing of flexible electronic devices with polymer substrates.

1.
A. K.
Wong
,
R. A.
Ferguson
, and
S. M.
Mansfield
, “
The mask error factor in optical lithography
,”
IEEE Trans. Semicond. Manuf.
13
,
235
242
(
2000
).
2.
M. D.
Levenson
,
N. S.
Viswanathan
, and
R. A.
Simpson
, “
Improving resolution in photolithography with a phase-shifting mask
,”
IEEE Trans. Electron Devices
29
,
1828
1836
(
1982
).
3.
J. F.
Chen
,
T.
Laidig
,
K. E.
Wampler
, and
R.
Caldwell
, “
Optical proximity correction for intermediate-pitch features using Sub-Resolution Scattering Bars
,”
J. Vac. Sci. Technol. B: Microelect. Nanometer Struct.
15
,
2426
2433
(
1997
).
4.
H. C.
Pfeiffer
,
H. C.
Pfeiffer
,
R. S.
Dhaliwal
,
S. D.
Golladay
,
S. K.
Doran
,
M. S.
Gordon
,
T. R.
Groves
,
R. A.
Kendall
,
J. E.
Lieberman
,
P. F.
Petric
 et al., “
Projection reduction exposure with variable axis immersion lenses: next generation lithography
,”
J. Vac. Sci. Technol. B: Microelect. Nanometer Struct.
17
,
2840
2846
(
1999
).
5.
T.
Ito
and
S.
Okazaki
, “
Pushing the limits of lithography
,”
Nature
406
,
1027
1031
(
2000
).
6.
M.
Swiktes
and
M.
Rothschild
, “
Immersion lithography at 157 nm
,”
J. Vac. Sci. Technol. B: Microelect. Nanometer Struct.
19
,
2353
2356
(
2001
).
7.
I.
Divliansky
,
T. S.
Mayer
,
K. S.
Holliday
, and
V. H.
Crespi
, “
Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography
,”
Appl. Phys. Lett.
82
,
1667
(
2003
).
8.
Y.-K.
Choi
,
T.-J.
King
, and
C.
Hu
, “
A spacer patterning technology for nanoscale CMOS
,”
IEEE Trans. Electron Devices
49
,
436
441
(
2002
).
9.
P.
Xu
,
Y.
Chen
,
Y.
Chen
,
L.
Miao
,
S.
Sun
,
S.-W.
Kim
,
A.
Berger
,
D.
Mao
,
C.
Bencher
,
R.
Hung
 et al., “
Sidewall spacer quadruple patterning for 15 nm half-pitch
,”
Proc. SPIE
7973
,
79731Q
(
2011
).
10.
B.
Zhang
,
M.
Zhang
, and
T.
Cui
, “
Low-cost shrink lithography with sub-22 nm resolution
,”
Appl. Phys. Lett.
100
,
133113
(
2012
).
11.
S.
Chung
,
J.
Lee
,
H.
Song
,
S.
Kim
,
J.
Jeong
, and
Y.
Hong
, “
Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate
,”
Appl. Phys. Lett.
98
,
153110
(
2011
).
12.
A. N.
Simonov
,
O.
Akhzar-Mehr
, and
G.
Vdovin
, “
Light scanner based on a viscoelastic stretchable grating
,”
Opt. Lett.
30
,
949
951
(
2005
).
13.
M. L.
Scarpello
,
D.
Kurup
,
H.
Rogier
,
D. V.
Ginste
,
F.
Axisa
,
J.
Vanfleteren
,
W.
Joseph
,
L.
Martens
, and
G.
Vermeeren
, “
Design of an implantable slot dipole conformal flexible antenna for biomedical applications
,”
IEEE Trans. Antennas Propag.
59
,
3556
3564
(
2011
).
14.
A. C.
Siegel
,
D. A.
Bruzewicz
,
D. B.
Weibel
, and
G. M.
Whitesides
, “
Microsolidics fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane)
,”
Adv. Mater.
19
,
727
733
(
2007
).
15.
S. P.
Lacour
,
J.
Jones
,
Z.
Suo
, and
S.
Wagner
, “
Design and performance of thin metal film interconnects for skin-like electronic circuits
,”
IEEE Electron Device Lett.
25
,
179
181
(
2004
).
16.
M.
Stach
,
E.-C.
Chang
,
C.-Y.
Yang
, and
C.-Y.
Lo
, “
Post-lithography pattern modification and its application to a tunable wire grid polarizer
,”
Nanotechnology
24
,
115306
(
2013
).
17.
E.-C.
Chang
,
M.
Stach
,
C.-Y.
Yang
,
C.-C.
Fu
, and
C.-Y.
Lo
, “
Enlarging a post-lithography pattern modification process window with a poisson's ratio-matching inter-layer
,”
Microelectron. Eng.
127
,
97
101
(
2014
).
18.
D.-H.
Kim
,
J.
Song
,
W. M.
Choi
,
H.-S.
Kim
,
R.-H.
Kim
,
Z.
Liu
,
Y. Y.
Huang
,
K.-C.
Hwang
,
Y.-W.
Zhang
, and
J. A.
Rogers
, “
Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations
,”
Proc. Nat. Acad. Sci.
105
,
18675
18680
(
2008
).
19.
D.
Caballero
,
M.
Pla-Roca
,
F.
Bessueille
,
C. A.
Mills
,
J.
Samitier
, and
A.
Errachid
, “
Atomic force microscopy characterization of a microcontact printed, self-assembled thiol monolayer for use in biosensors
,”
Anal. Lett.
39
,
1721
1734
(
2006
).
20.
B.
Dhananjay
and
K.-M.
Chantal
, “
Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments
,”
Microelectron. Eng.
83
,
1277
1279
(
2006
).
21.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Butterworth-Heinemann
,
1986
), Vol. 7, p.
42
.
22.
N.
Bowden
,
S.
Brittain
,
A. G.
Evans
,
J. W.
Hutchinson
, and
G. M.
Whitesides
, “
Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer
,”
Nature
393
,
146
149
(
1998
).
23.
S. P.
Lacour
,
S.
Wagner
,
Z.
Huang
, and
Z.
Suo
, “
Stretchable gold conductors on elastomeric substrates
,”
Appl. Phys. Lett.
82
,
2404
2406
(
2003
).
24.
W. T. S.
Huck
,
N.
Bowden
,
P.
Onck
,
T.
Pardoen
,
J. W.
Hutchinson
, and
G. M.
Whitesides
, “
Ordering of spontaneously formed buckles on planar surfaces
,”
Langmuir
16
,
3497
3501
(
2000
).
25.
Z. Y.
Huang
,
W.
Hong
, and
Z.
Suo
, “
Nonlinear analyses of wrinkles in a film bonded to a compliant substrate
,”
J. Mech. Phys. Solids
53
,
2101
2118
(
2005
).
26.
S. P.
Lacour
,
J.
Jones
,
S.
Wagner
,
T.
Li
, and
Z.
Suo
, “
Stretchable interconnects for elastic electronic surfaces
,”
Proc. IEEE
93
,
1459
1467
(
2005
).
27.
J. N.
Lee
,
C.
Park
, and
G. M.
Whitesides
, “
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
,”
Anal. Chem.
75
,
6544
6554
(
2003
).
28.
K.
Khanafer
,
A.
Duprey
,
M.
Schlicht
, and
R.
Berguer
, “
Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications
,”
Biomed. Microdevices
11
,
503
508
(
2009
).
You do not currently have access to this content.