Stretchable electronic systems can play instrumental role for reconfigurable macro-electronics such as distributed sensor networks for wearable and bio-integrated electronics. Typically, polymer composite based materials and its deterministic design as interconnects are used to achieve such systems. Nonetheless, non-polymeric inorganic silicon is the predominant material for 90% of electronics. Therefore, we report the design and fabrication of an all silicon based network of hexagonal islands connected through spiral springs to form an ultra-stretchable arrangement for complete compliance to highly asymmetric shapes. Several design parameters are considered and their validation is carried out through finite element analysis. The fabrication process is based on conventional microfabrication techniques and the measured stretchability is more than 1000% for single spirals and area expansions as high as 30 folds in arrays. The reported method can provide ultra-stretchable and adaptable electronic systems for distributed network of high-performance macro-electronics especially useful for wearable electronics and bio-integrated devices.

1.
J. A.
Rogers
,
T.
Someya
, and
Y.
Huang
,
Science
327
,
1603
(
2010
).
2.
S. J.
Benight
,
C.
Wang
,
J. B. H.
Tok
, and
Z.
Bao
,
Prog. Polym. Sci.
38
,
1961
(
2013
).
3.
B.
Crone
,
A.
Dodabalapur
,
Y. Y.
Lin
,
R. W.
Filas
,
Z.
Bao
,
A.
LaDuca
,
R.
Sarpeshkar
,
H. E.
Katz
, and
W.
Li
,
Nature
403
,
521
(
2000
).
4.
M.
Kaltenbrunner
,
M. S.
White
,
E. D.
Głowacki
,
T.
Sekitani
,
T.
Someya
,
N. S.
Sariciftci
, and
S.
Bauer
,
Nat. Commun.
3
,
770
(
2012
).
5.
T.
Someya
,
Y.
Kato
,
T.
Sekitani
,
S.
Iba
,
Y.
Noguchi
,
Y.
Murase
,
H.
Kawaguchi
, and
T.
Sakurai
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
12321
(
2005
).
6.
T.
Sekitani
and
T.
Someya
,
Adv. Mater.
22
,
2228
(
2010
).
7.
Y.
Yuan
,
G.
Giri
,
A. L.
Ayzner
,
A. P.
Zoombelt
,
S. C. B.
Mannsfeld
,
J.
Chen
,
D.
Nordlund
,
M. F.
Toney
,
J.
Huang
, and
Z.
Bao
,
Nat. Commun.
5
,
3005
(
2013
).
8.
T.
Takahashi
,
K.
Takei
,
A. G.
Gillies
,
R. S.
Fearing
, and
A.
Javey
,
Nano Lett.
11
,
5408
(
2011
).
9.
J. S.
Bendall
,
I.
Graz
, and
S. P.
Lacour
,
ACS Appl. Mater. Interfaces
3
,
3162
(
2011
).
10.
F.
Xu
,
M.-Y.
Wu
,
N. S.
Safron
,
S. S.
Roy
,
R. M.
Jacobberger
,
D. J.
Bindl
,
J.-H.
Seo
,
T.-H.
Chang
,
Z.
Ma
, and
M. S.
Arnold
,
Nano Lett.
14
,
682
(
2014
).
11.
S.-K.
Lee
,
B. J.
Kim
,
H.
Jang
,
S. C.
Yoon
,
C.
Lee
,
B. Hee
Hong
,
J. A.
Rogers
,
J. H.
Cho
, and
J.-H.
Ahn
,
Nano Lett.
11
,
4642
(
2011
).
12.
S. H.
Chae
,
W. J.
Yu
,
J. J.
Bae
,
D. L.
Duong
,
D.
Perello
,
H. Y.
Jeong
,
Q. H.
Ta
,
T. H.
Ly
,
Q. A.
Vu
,
M.
Yun
,
X.
Duan
, and
Y. H.
Lee
,
Nature Mater.
12
,
403
(
2013
).
13.
Y.
Sun
,
W. M.
Choi
,
H.
Jiang
,
Y. Y.
Huang
, and
J. A.
Rogers
,
Nat. Nanotechnol.
1
,
201
(
2006
).
14.
D.-Y.
Khang
,
H.
Jiang
,
Y.
Huang
, and
J. A.
Rogers
,
Science
311
,
208
(
2006
).
15.
D.-H.
Kim
,
J.
Xiao
,
J.
Song
,
Y.
Huang
, and
J. A.
Rogers
,
Adv. Mater.
22
,
2108
(
2010
).
16.
X.
Hu
,
P.
Krull
,
B. d.
Graff
,
K.
Dowling
,
J. A.
Rogers
, and
W. J.
Arora
,
Adv. Mater.
23
,
2933
(
2011
).
17.
Y.
Zhang
,
H.
Fu
,
S.
Xu
,
J. A.
Fan
,
K.-C.
Hwang
,
J.
Jiang
,
J. A.
Rogers
, and
Y.
Huang
,
J. Mech. Phys. Solids
72
,
115
(
2014
).
18.
S.
Xu
,
Y.
Zhang
,
J.
Cho
,
J.
Lee
,
X.
Huang
,
L.
Jia
,
J. A.
Fan
,
Y.
Su
,
J.
Su
,
H.
Zhang
,
H.
Cheng
,
B.
Lu
,
C.
Yu
,
C.
Chuang
,
T.-i.
Kim
,
T.
Song
,
K.
Shigeta
,
S.
Kang
,
C.
Dagdeviren
,
I.
Petrov
,
P. V.
Braun
,
Y.
Huang
,
U.
Paik
, and
J. A.
Rogers
,
Nat. Commun.
4
,
1543
(
2013
).
19.
J. A.
Fan
,
W.-H.
Yeo
,
Y.
Su
,
Y.
Hattori
,
W.
Lee
,
S.-Y.
Jung
,
Y.
Zhang
,
Z.
Liu
,
H.
Cheng
,
L.
Falgout
,
M.
Bajema
,
T.
Coleman
,
D.
Gregoire
,
R. J.
Larsen
,
Y.
Huang
, and
J. A.
Rogers
,
Nat. Commun.
5
,
3266
(
2014
).
20.
K.
Huang
,
R.
Dinyari
,
G.
Lanzara
,
J. Y.
Kim
,
J.
Feng
,
C.
Vancura
,
F.-K.
Chang
, and
P.
Peumans
, in
IEEE International Electron Devices Meeting, 2007
, 10–12 December 2007, pp.
217
220
.
21.
See supplemental material at http://dx.doi.org/10.1063/1.4898128 for a detailed description of the finite element simulation and a movie of manual stretching of 5 μm-arm spiral for 8 cycles.
22.
J. P.
Rojas
,
M. T.
Ghoneim
,
C. D.
Young
, and
M. M.
Hussain
,
IEEE Trans. Electron. Devices
60
,
3305
(
2013
).
23.
J. P.
Rojas
and
M. M.
Hussain
,
Phys. Status Solidi RRL
7
,
187
(
2013
).
24.
J. P.
Rojas
,
G. Torres
Sevilla
, and
M. M.
Hussain
,
Appl. Phys. Lett.
102
,
064102
(
2013
).
25.
J. P.
Rojas
,
A.
Syed
, and
M. M.
Hussain
, in
2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France
, 29 January—2 February 2012, pp.
281
284
.
26.
J. P.
Rojas
,
G. A. Torres
Sevilla
,
M. T.
Ghoneim
,
S. B.
Inayat
,
S. M.
Ahmed
,
A. M.
Hussain
, and
M. M.
Hussain
,
ACS Nano
8
,
1468
(
2014
).
27.
J. P.
Rojas
,
G. A. Torres
Sevilla
, and
M. M.
Hussain
,
Sci. Rep.
3
,
2609
(
2013
).
28.
G. A. Torres
Sevilla
,
S. B.
Inayat
,
J. P.
Rojas
,
A. M.
Hussain
, and
M. M.
Hussain
,
Small
9
,
3916
(
2013
).
29.
G. T.
Sevilla
,
J. P.
Rojas
,
S.
Ahmed
,
A.
Hussain
,
S. B.
Inayat
, and
M. M.
Hussain
, in
2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain
, 16 June-20 June 2013 June
2013
, pp.
2636
2639
.

Supplementary Material

You do not currently have access to this content.