Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

1.
F.
Krebs
, “
Fabrication and processing of polymer solar cells: A review of printing and coating techniques
,”
Sol. Energy Mater. Sol. Cells
93
,
394
412
(
2009
).
2.
C.-W.
Chu
,
H.
Yang
,
W.-J.
Hou
,
J.
Huang
,
G.
Li
, and
Y.
Yang
, “
Control of the nanoscale crystallinity and phase separation in polymer solar cells
,”
Appl. Phys. Lett.
92
,
103306
(
2008
).
3.
K.
Kawano
,
J.
Sakai
,
M.
Yahiro
, and
C.
Adachi
, “
Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives
,”
Sol. Energy Mater. Sol. Cells
93
,
514
518
(
2009
).
4.
A.
Karim
,
J.
Douglas
,
B.
Lee
,
S.
Glotzer
,
J.
Rogers
,
R.
Jackman
,
E.
Amis
, and
G.
Whitesides
, “
Phase separation of ultrathin polymer-blend films on patterned substrates
,”
Phys. Rev. E
57
,
R6273
(
1998
).
5.
A.
Bernasik
,
J.
Wlodarczyk-Miskiewicz
,
W.
Luzny
,
K.
Kowalski
,
J.
Raczkowska
,
J.
Rysz
, and
A.
Budkowski
, “
Lamellar structures formed in spin-cast blends of insulating and conducting polymers
,”
Synth. Met.
144
,
253
257
(
2004
).
6.
S.
Walheim
,
M.
Boltau
,
J.
Mlynek
,
G.
Krausch
, and
U.
Steiner
, “
Structure formation via polymer demixing in spin-cast films
,”
Macromolecules
30
,
4995
5003
(
1997
).
7.
S.
Ebbens
,
R.
Hodgkinson
,
A. J.
Parnell
,
A.
Dunbar
,
S. J.
Martin
,
P. D.
Topham
,
N.
Clarke
, and
J. R.
Howse
, “
In situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating
,”
ACS Nano
5
,
5124
5131
(
2011
).
8.
G.
Buxton
and
N.
Clarke
, “
Ordering polymer blend morphologies via solvent evaporation
,”
Europhys. Lett.
78
,
56006
(
2007
).
9.
S. Y.
Heriot
and
R. A. L.
Jones
, “
An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films
,”
Nat. Mater.
4
,
782
786
(
2005
).
10.
A.
Dunbar
,
P.
Mokarian-Tabari
,
A.
Parnell
,
S.
Martin
,
M.
Skoda
, and
R.
Jones
, “
A solution concentration dependent transition from self-stratification to lateral phase separation in spin-cast ps:d-pmma thin films
,”
Eur. Phys. J. E
31
,
369
375
(
2010
).
11.
D. T. W.
Toolan
,
E.
Haq
,
A.
Dunbar
,
S.
Ebbens
,
N.
Clarke
,
P. D.
Topham
, and
J. R.
Howse
, “
Direct observation of morphological development during the spin-coating of polystyrene–poly(methyl methacrylate) polymer blends
,”
J. Polym. Sci., Part B
51
,
875
881
(
2013
).
12.
D. T. W.
Toolan
,
A. J.
Parnell
,
P. D.
Topham
, and
J. R.
Howse
, “
Directed phase separation of pfo:ps blends during spin-coating using feedback controlled in situ stroboscopic fluorescence microscopy
,”
J. Mater. Chem. A
1
,
3587
3592
(
2013
).
13.
M.
Tsige
and
G. S.
Grest
, “
Solvent evaporation and interdiffusion in polymer films
,”
J. Phys.: Condens. Matter
17
,
S4119
(
2005
).
14.
D. M.
Saylor
,
C.-S.
Kim
,
D. V.
Patwardhan
, and
J. A.
Warren
, “
Modeling microstructure development and release kinetics in controlled drug release coatings
,”
J. Pharm. Sci.
98
,
169
186
(
2009
).
15.
D.
Saylor
,
C.-S.
Kim
,
D.
Patwardhan
, and
J.
Warren
, “
Diffuse-interface theory for structure formation and release behavior in controlled drug release systems
,”
Acta Biomater.
3
,
851
864
(
2007
).
16.
Y.
Shang
,
D.
Kazmer
,
M.
Wei
,
J.
Mead
, and
C.
Barry
, “
Numerical simulation of phase separation of immiscible polymer blends on a heterogeneously functionalized substrate
,”
J. Chem. Phys.
128
,
224909
(
2008
).
17.
J. J.
Michels
and
E.
Moons
, “
Simulation of surface-directed phase separation in a solution-processed polymer/pcbm blend
,”
Macromolecules
46
,
8693
8701
(
2013
).
18.
O.
Wodo
and
B.
Ganapathysubramanian
, “
Computationally efficient solution to the Cahn–Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem
,”
J. Comput. Phys.
230
,
6037
6060
(
2011
).
19.
O.
Wodo
and
B.
Ganapathysubramanian
, “
Modeling morphology evolution during solvent-based fabrication of organic solar cells
,”
Comput. Mater. Sci.
55
,
113
126
(
2012
).
20.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial energy
,”
J. Chem. Phys.
28
,
258
(
1958
).
21.
L.
Robeson
,
Polymer Blends: A Comprehensive Review
(
Hansen
,
2007
).
22.
G.
Strobl
,
The Physics of Polymers
(
Springer
,
2007
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4898136 for additional details.
24.
A. C.
Arias
,
N.
Corcoran
,
M.
Banach
,
R. H.
Friend
,
J. D.
MacKenzie
, and
W. T. S.
Huck
, “
Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing
,”
Appl. Phys. Lett.
80
,
1695
1697
(
2002
).

Supplementary Material

You do not currently have access to this content.