We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

1.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
,
Nature
400
,
849
852
(
1999
).
2.
Z. K.
Hu
,
B. L.
Sun
,
X. C.
Duan
,
M. K.
Zhou
,
L. L.
Chen
,
S.
Zhan
, and
J.
Luo
,
Phys. Rev. A
88
,
043610
(
2013
).
3.
P.
Gillot
,
O.
Francis
,
A.
Landragin
,
F. Pereira Dos
Santos
, and
S.
Merlet
,
Metrologia
51
,
L15
L17
(
2014
).
4.
Q.
Bodart
,
S.
Merlet
,
N.
Malossi
,
F. Pereira dos
Santos
,
P.
Bouyer
, and
A.
Landragin
,
Appl. Phys. Lett.
96
,
134101
(
2010
).
5.
Y.
Bidel
,
O.
Carraz
,
R.
Charriére
,
M.
Cadoret
,
N.
Zahzam
, and
A.
Bresson
,
Appl. Phys. Lett.
102
,
144107
(
2013
).
6.
B.
Barrett
,
P.-A.
Gominet
,
E.
Cantin
,
L.
Antoni-Micollier
,
A.
Bertoldi
,
B.
Battelier
,
P.
Bouyer
,
J.
Lautier
, and
A.
Landragin
, in
Proceedings of the International School of Physics “Enrico Fermi,”
edited by
G. M.
Tino
and
M. A.
Kasevich
(
Course 188 on Atom Interferometry
,
Varrena, Italy
,
2014
);
B.
Barrett
,
P.-A.
Gominet
,
E.
Cantin
,
L.
Antoni-Micollier
,
A.
Bertoldi
,
B.
Battelier
,
P.
Bouyer
,
J.
Lautier
, and
A.
Landragin
, e-print arXiv:1311.7033 (unpublished).
8.
J. Le
Gouët
,
T. E.
Mehlstäubler
,
J.
Kim
,
S.
Merlet
,
A.
Clairon
,
A.
Landragin
, and
F. Pereira Dos
Santos
,
Appl. Phys. B
92
,
133
144
(
2008
).
9.
M.
Hauth
,
C.
Freier
,
V.
Schkolnik
,
A.
Senger
,
M.
Schmidt
, and
A.
Peters
,
Appl. Phys. B
113
,
49
55
(
2013
).
10.
H. J.
McGuiness
,
A. V.
Rakholia
, and
G. W.
Biedermann
,
Appl. Phys. Lett.
100
,
011106
(
2012
).
11.
A.
Louchet-Chauvet
,
T.
Farah
,
Q.
Bodart
,
A.
Clairon
,
A.
Landragin
,
S.
Merlet
, and
F. Pereira Dos
Santos
,
New J. Phys.
13
,
065025
(
2011
).
12.
R.
Geiger
,
V.
Ménoret
,
G.
Stern
,
N.
Zahzam
,
P.
Cheinet
,
B.
Battelier
,
A.
Villing
,
F.
Moron
,
M.
Lours
,
Y.
Bidel
,
A.
Bresson
,
A.
Landragin
, and
P.
Bouyer
,
Nat. Commun.
2
,
474
(
2011
).
13.
M.
Kasevich
and
S.
Chu
,
Phys. Rev. Lett.
67
,
181
(
1991
).
14.
S.
Merlet
,
L.
Volodimer
,
M.
Lours
, and
F. Pereira Dos
Santos
,
Appl. Phys. B
(published online).
15.
C.
Antoine
and
C. J.
Bordé
,
J. Opt. B: Quantum Semiclassical Opt.
5
,
S199
S207
(
2003
).
16.
S.
Merlet
,
J. Le
Gouët
,
Q.
Bodart
,
A.
Landragin
,
F. Pereira Dos
Santos
, and
P.
Rouchon
,
Metrologia
46
,
87
94
(
2009
).
17.
See http://www.nanometrics.ca/products/titan for force balance triaxial accelerometer, model Titan from Nanometrics Inc., 250 Herzberg Road, Kanata, Ontario, Canada. All measurements have been realized in the ±0.25 g full scale range mode.
18.
P.
Cheinet
,
B.
Canuel
,
F.
Pereira Dos Santos
,
A.
Gauguet
,
F.
Leduc
, and
A.
Landragin
,
IEEE Trans. Instrum. Meas.
57
,
1141
(
2008
).
19.
B.
Canuel
,
F.
Leduc
,
D.
Holleville
,
A.
Gauguet
,
J.
Fils
,
A.
Virdis
,
A.
Clairon
,
N.
Dimarcq
,
C. J.
Bordé
,
A.
Landragin
, and
P.
Bouyer
,
Phys. Rev. Lett.
97
,
010402
(
2006
).
20.
G.
Tackmann
,
P.
Berg
,
C.
Schubert
,
S.
Abend
,
M.
Gilowski
,
W.
Ertmer
, and
E. M.
Rasel
,
New J. Phys.
14
,
015002
(
2012
).
21.
J. B.
Fixler
,
G. T.
Foster
,
J. M.
McGuirk
, and
M. A.
Kasevich
,
Science
315
,
74
77
(
2007
).
22.
G.
Rosi
,
F.
Sorrentino
,
L.
Cacciapuoti
,
M.
Prevedelli
, and
G. M.
Tino
,
Nature
510
,
518
521
(
2014
).
You do not currently have access to this content.