Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.

1.
M.
Cardu
,
A.
Giraudi
, and
P.
Oreste
,
Rem: Rev. Esc. Minas
66
,
375
(
2013
).
2.
A. S.
Babu
,
K. K.
Mishra
,
P. D.
Kshirsagar
,
H.
Shekar
, and
V. S.
Rasane
,
Def. Sci. J.
63
,
305
(
2013
).
3.
R.
Kichouliya
,
R.
Devender
,
V. V.
Ramasarma
,
D. S.
Reddy
, and
V. G.
Borkar
, in
Proceedings of IEEE International Symposium on Electromagnetic Compatibility
(
2011
), p.
946
.
4.
J. J.
Pantoja
,
N. M.
Peña
,
F.
Rachidi
,
F.
Vega
, and
F.
Roman
,
Def. Sci. J.
63
,
386
(
2013
).
5.
P. K.
Mishra
,
M.
Bolic
,
M. C. E.
Yagoub
, and
R. F.
Stewart
,
J. Appl. Geophys.
76
,
33
(
2012
).
6.
D. A.
Freiwald
,
J. Appl. Phys.
43
,
2224
(
1972
).
7.
C. K.
Westbrook
,
Combust. Sci. Technol.
20
,
5
(
1979
).
8.
I. O.
Samuelraj
,
G.
Jagadeesh
, and
K.
Kontis
,
Shock Waves
23
,
307
(
2013
).
9.
P.
Zhu
,
X.
Zhou
,
R.-Q.
Shen
,
Y.-H.
Ye
, and
Y.
Han
,
Chin. J. Energetic Mater.
4
,
366
(
2011
).
10.
J. T.
Mabeck
and
G. G.
Malliaras
,
Anal. Bioanal. Chem.
384
,
343
(
2006
).
11.
G.
Yu
,
Y.
Cao
,
J.
Wang
,
J.
McElvain
, and
A. J.
Heeger
,
Synth. Met.
102
,
904
(
1999
).
12.
J.
Labram
,
P.
Wöbkenberg
,
D.
Bradley
, and
T.
Anthopoulos
,
Org. Electron.
11
,
1250
(
2010
).
13.
I.
Manunza
and
A.
Bonfiglio
,
Biosens. Bioelectron.
22
,
2775
(
2007
).
14.
I.
Manunza
,
A.
Sulis
, and
A.
Bonfiglio
,
Appl. Phys. Lett.
89
,
143502
(
2006
).
15.
T.
Sekitani
,
Y.
Noguchi
,
U.
Zschieschang
,
H.
Klauk
, and
T.
Someya
,
Proc. Natl. Acad. Sci.
105
,
4976
(
2008
).
16.
A. L.
Briseno
,
S. C. B.
Mannsfeld
,
S. A.
Jenekhe
,
Z.
Bao
, and
Y.
Xia
,
Mater. Today
11
,
38
(
2008
).
17.
I. D. W.
Samuel
,
Philos. Trans. R. Soc. London, Ser. A
358
,
193
(
2000
).
18.
D.
Elkington
,
D.
Darwis
,
X.
Zhou
,
W.
Belcher
, and
P. C.
Dastoor
,
Org. Electron.
13
,
153
(
2012
).
19.
R. K.
Eckhoff
,
J. Loss Prev. Process Ind.
15
,
305
(
2002
).
20.
L.
Kergoat
,
B.
Piro
,
M.
Berggren
,
G.
Horowitz
, and
M.-C.
Pham
,
Anal. Bioanal. Chem.
402
,
1813
(
2012
).
21.
T.
Someya
,
T.
Sekitani
,
S.
Iba
,
Y.
Kato
,
H.
Kawaguchi
, and
T.
Sakurai
,
Proc. Natl. Acad. Sci.
101
,
9966
(
2004
).
22.
T.
Sekitani
and
T.
Someya
,
Adv. Mater.
22
,
2228
(
2010
).
23.
X.
Jing
,
W.
Zhao
, and
L.
Lan
,
J. Mater. Sci. Lett.
19
,
377
(
2000
).
24.
Z.
Ounaies
,
C.
Park
,
K. E.
Wise
,
E. J.
Siochi
, and
J. S.
Harrison
,
Compos. Sci. Technol.
63
,
1637
(
2003
).
25.
Y.-C.
Chao
,
W.-J.
Lai
,
C.-Y.
Chen
,
H.-F.
Meng
,
H.-W.
Zan
, and
S.-F.
Horng
,
Appl. Phys. Lett.
95
,
253306
(
2009
).
You do not currently have access to this content.