Most research focuses on varying the resonator and dielectric spacer to configure the absorption and resonant frequency of terahertz (THz) metamaterial absorbers (MAs), where a metal ground plane is used as a perfect reflector of incident THz waves. In this paper, we modulate the MAs absorption by varying the conductivity of the ground plane. Two THz MAs were fabricated by replacing the gold ground planes with cobalt silicide films, and the measured absorptivity decreases by 4% for the electric resonance and increases by 44% for the dipole resonance. Our quantitative analysis reveals that when the conductivity of the ground plane decreases from 1.8 × 107 S/m to 3.0 × 105 S/m, the absorptivity of the electric resonance decreases by 23%, while that of the dipole resonance increases by 62%. Our approach also provides a practical method to measure the electric conductivity of conductive films in the THz regime.

1.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
(
5801
),
977
980
(
2006
).
2.
W. J.
Padilla
,
A. J.
Taylor
, and
R. D.
Averitt
, “
Dynamical electric and magnetic metamaterial response at terahertz frequencies
,”
Phys. Rev. Lett.
96
(
10
),
107401
(
2006
).
3.
J.
Valentine
,
S.
Zhang
,
T.
Zentgraf
,
E.
Ulin-Avila
,
D. A.
Genov
,
G.
Bartal
, and
X.
Zhang
, “
Three-dimensional optical metamaterial with a negative refractive index
,”
Nature
455
(
7211
),
376
379
(
2008
).
4.
V. M.
Shalaev
, “
Optical negative-index metamaterials
,”
Nat. Photonics
1
(
1
),
41
48
(
2007
).
5.
R. A.
Shelby
, “
Experimental verification of a negative index of refraction
,”
Science
292
(
5514
),
77
79
(
2001
).
6.
J. M.
Lukens
,
D. E.
Leaird
, and
A. M.
Weiner
, “
A temporal cloak at telecommunication data rate
,”
Nature
498
(
7453
),
205
208
(
2013
).
7.
W. X.
Jiang
,
C.-W.
Qiu
,
T.
Han
,
S.
Zhang
, and
T. J.
Cui
, “
Creation of ghost illusions using wave dynamics in metamaterials
,”
Adv. Funct. Mater.
23
(
32
),
4028
4034
(
2013
).
8.
X.
Zhang
and
Z.
Liu
, “
Superlenses to overcome the diffraction limit
,”
Nature Mater.
7
(
6
),
435
441
(
2008
).
9.
J. B.
Pendry
, “
Negative refraction makes a perfect lens
,”
Phys. Rev. Lett.
85
(
18
),
3966
3969
(
2000
).
10.
M.
Tonouchi
, “
Cutting-edge terahertz technology
,”
Nat. Photonics
1
(
2
),
97
105
(
2007
).
11.
N.
Landy
,
S.
Sajuyigbe
,
J.
Mock
,
D.
Smith
, and
W.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
(
20
),
207402
(
2008
).
12.
H.
Tao
,
C.
Bingham
,
A.
Strikwerda
,
D.
Pilon
,
D.
Shrekenhamer
,
N.
Landy
,
K.
Fan
,
X.
Zhang
,
W.
Padilla
, and
R.
Averitt
, “
Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization
,”
Phys. Rev. B
78
(
24
),
241103
(
2008
).
13.
S.
Zhong
and
S.
He
, “
Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials
,”
Sci. Rep.
3
,
2083
(
2013
).
14.
C.
Hou-Tong
, “
Interference theory of metamaterial perfect absorbers
,”
Opt. Express
20
(
7
),
7165
7172
(
2012
).
15.
X.
Shen
,
Y.
Yang
,
Y.
Zang
,
J.
Gu
,
J.
Han
,
W.
Zhang
, and
T. Jun
Cui
, “
Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation
,”
Appl. Phys. Lett.
101
(
15
),
154102
(
2012
).
16.
F.
Alves
,
B.
Kearney
,
D.
Grbovic
,
N. V.
Lavrik
, and
G.
Karunasiri
, “
Strong terahertz absorption using SiO2/Al based metamaterial structures
,”
Appl. Phys. Lett.
100
(
11
),
111104
(
2012
).
17.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Cambridge University Press
,
2002
).
18.
L.
Huang
,
D. R.
Chowdhury
,
S.
Ramani
,
M. T.
Reiten
,
S.-N.
Luo
,
A. K.
Azad
,
A. J.
Taylor
, and
H.-T.
Chen
, “
Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers
,”
Appl. Phys. Lett.
101
(
10
),
101102
(
2012
).
19.
C.
Hu
,
X.
Li
,
Q.
Feng
,
X. N.
Chen
, and
X.
Luo
, “
Investigation on the role of the dielectric loss in metamaterial absorber
,”
Opt. Express
18
(
7
),
6598
6603
(
2010
).
20.
D.
Schurig
,
J. J.
Mock
, and
D. R.
Smith
, “
Electric-field-coupled resonators for negative permittivity metamaterials
,”
Appl. Phys. Lett.
88
(
4
),
041109
(
2006
).
21.
Y.
Lei
, “
Research on parylene-C filling in micro/nano gaps and nanoparticle crystal
,” Ph.D. thesis (
Peking University
,
2011
).
22.
D. R.
Smith
,
D. C.
Vier
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Electromagnetic parameter retrieval from inhomogeneous metamaterials
,”
Phys. Rev. E
71
(
3
),
036617
(
2005
).
23.
D. R.
Smith
and
S.
Schultz
, “
Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients
,”
Phys. Rev. B
65
(
19
),
195104
(
2002
).
24.
Q.-Y.
Wen
,
H.-W.
Zhang
,
Q.-H.
Yang
,
Y.-S.
Xie
,
K.
Chen
, and
Y.-L.
Liu
, “
Terahertz metamaterials with VO[sub 2] cut-wires for thermal tunability
,”
Appl. Phys. Lett.
97
(
2
),
021111
(
2010
).
25.
J.
Gu
,
R.
Singh
,
X.
Liu
,
X.
Zhang
,
Y.
Ma
,
S.
Zhang
,
S. A.
Maier
,
Z.
Tian
,
A. K.
Azad
,
H. T.
Chen
,
A. J.
Taylor
,
J.
Han
, and
W.
Zhang
, “
Active control of electromagnetically induced transparency analogue in terahertz metamaterials
,”
Nat. Commun.
3
,
1151
(
2012
).
You do not currently have access to this content.