Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αDB). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αDB in the brain layer with a step decrement of 10% while maintaining αDB values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

1.
T.
Durduran
and
A. G.
Yodh
,
Neuroimage
85
,
51
(
2014
).
2.
D. J.
Pine
,
D. A.
Weitz
,
P. M.
Chaikin
, and
E.
Herbolzheimer
,
Phys. Rev. Lett.
60
(
12
),
1134
(
1988
).
3.
G.
Maret
and
P. E.
Wolf
,
Z. Phys. B: Condens. Matter
65
(
4
),
409
(
1987
).
4.
C.
Cheung
,
J. P.
Culver
,
K.
Takahashi
,
J. H.
Greenberg
, and
A. G.
Yodh
,
Phys. Med. Biol.
46
(
8
),
2053
(
2001
).
5.
N.
Roche-Labarbe
,
S. A.
Carp
,
A.
Surova
,
M.
Patel
,
D. A.
Boas
,
R. E.
Grant
, and
M. A.
Franceschini
,
Hum. Brain Mapp.
31
(
3
),
341
(
2010
).
6.
J.
Dong
,
R. Z.
Bi
,
J. H.
Ho
,
P. S. P.
Thong
,
K. C.
Soo
, and
K.
Lee
,
J. Biomed. Opt.
17
(
9
),
097004
(
2012
).
7.
F.
Jaillon
,
J.
Li
,
G.
Dietsche
,
T.
Elbert
, and
T.
Gisler
,
Opt. Express
15
(
11
),
6643
(
2007
).
8.
T.
Li
,
Y.
Lin
,
Y.
Shang
,
L.
He
,
C.
Huang
,
M.
Szabunio
, and
G.
Yu
,
Sci. Rep.
3
,
1358
(
2013
).
9.
Y.
Shang
,
T.
Li
,
L.
Chen
,
Y.
Lin
,
M.
Toborek
, and
G.
Yu
,
Appl. Phys. Lett.
104
(
19
),
193703
(
2014
).
10.
F.
Jaillon
,
S. E.
Skipetrov
,
J.
Li
,
G.
Dietsche
,
G.
Maret
, and
T.
Gisler
,
Opt. Express
14
(
22
),
10181
(
2006
).
11.
L.
Gagnon
,
M.
Desjardins
,
J.
Jehanne-Lacasse
,
L.
Bherer
, and
F.
Lesage
,
Opt. Express
16
(
20
),
15514
(
2008
).
12.
Y.
Shang
,
L.
Chen
,
M.
Toborek
, and
G.
Yu
,
Opt. Express
19
(
21
),
20301
(
2011
).
13.
D. A.
Boas
and
A. G.
Yodh
,
J. Opt. Soc. Am. A
14
(
1
),
192
(
1997
).
14.
T.
Durduran
,
R.
Choe
,
W. B.
Baker
, and
A. G.
Yodh
,
Rep. Prog. Phys.
73
(
7
),
076701
(
2010
).
15.
J.
Li
,
G.
Dietsche
,
D.
Iftime
,
S. E.
Skipetrov
,
G.
Maret
,
T.
Elbert
,
B.
Rockstroh
, and
T.
Gisler
,
J. Biomed. Opt.
10
(
4
),
44002
(
2005
).
16.
R.
Cheng
,
Y.
Shang
,
D.
Hayes
,
S. P.
Saha
, and
G.
Yu
,
Neuroimage
62
(
3
),
1445
(
2012
).
You do not currently have access to this content.