We present a comprehensive analysis of the imaging characteristics of a scanning microwave microscopy (SMM) system operated in the transmission mode. In particular, we use rigorous three-dimensional finite-element simulations to investigate the effect of varying the permittivity and depth of sub-surface constituents of samples, on the scattering parameters of probes made of a metallic nano-tip attached to a cantilever. Our results prove that one can achieve enhanced imaging sensitivity in the transmission mode SMM (TM-SMM) configuration, from twofold to as much as 5× increase, as compared to that attainable in the widely used reflection mode SMM operation. In addition, we demonstrate that the phase of the S21-parameter is much more sensitive to changes of the system parameters as compared to its magnitude, the scattering parameters being affected the most by variations in the conductivity of the substrate. Our analysis is validated by a good qualitative agreement between our modeling results and experimental data. These results suggest that TM-SMM systems can be used as highly efficient imaging tools with new functionalities, findings which could have important implications to the development of improved experimental imaging techniques.

1.
P.
Alivisatos
,
Nat. Biotechnol.
22
,
47
(
2004
).
2.
X.
Michalet
,
F. F.
Pinaud
,
L. A.
Bentolila
,
J. M.
Tsay
,
S.
Doose
,
J. J.
Li
,
G.
Sundaresan
,
A. M.
Wu
,
S. S.
Gambhir
, and
S.
Weiss
,
Science
307
,
538
(
2005
).
3.
M. E.
Davis
,
Z.
Chen
, and
D. M.
Shin
,
Nat. Rev. Drug Discovery
7
,
771
(
2008
).
4.
H-Y.
Chen
,
M. K. F.
Lo
,
G.
Yang
,
H. G.
Monbouquette
, and
Y.
Yang
,
Nat. Nanotechnol.
3
,
543
(
2008
).
5.
M. M.
van Schooneveld
,
A.
Gloter
,
O.
Stephan
,
L. F.
Zagonel
,
R.
Koole
,
A.
Meijerink
,
W. J. M.
Mulder
, and
F. M. F. de
Groot
,
Nat. Nanotechnol.
5
,
538
(
2010
).
6.
E.
Kymakis
and
G. A. J.
Amaratunga
,
Appl. Phys. Lett.
80
,
112
(
2002
).
7.
B. T.
Rosner
and
D. W.
van der Weide
,
Rev. Sci. Instrum.
73
,
2505
(
2002
).
8.
D. M.
Jones
,
J. R.
Smith
,
W. T. S.
Huck
, and
C.
Alexander
,
Adv. Mater.
14
,
1130
(
2002
).
9.
D.
Fotiadis
,
S.
Scheuring
,
S. A.
Muller
,
A.
Engel
, and
D. J.
Muller
,
Micron
33
,
385
(
2002
).
10.
L.
Fumagalli
,
D.
Esteban-Ferrer
,
A.
Cuervo
,
J. S.
Carrascosa
, and
G.
Gomila
,
Nat. Mater.
11
,
808
(
2012
).
11.
S.
Belaidi
,
P.
Girard
, and
G.
Leveque
,
J. Appl. Phys.
81
,
1023
(
1997
).
12.
C.
Gao
,
T.
Wei
,
F.
Duewer
,
Y. L.
Lu
, and
X. D.
Xiang
,
Appl. Phys. Lett.
71
,
1872
(
1997
).
13.
M.
Tabib-Azar
and
Y. Q.
Wang
,
IEEE Trans. Microwave Theory Tech.
52
,
971
(
2004
).
14.
H. P.
Huber
,
M.
Moertelmaier
,
T. M.
Wallis
,
C. J.
Chiang
,
M.
Hochleitner
,
A.
Imtiaz
,
Y. J.
Oh
,
K.
Schilcher
,
M.
Dieudonne
,
J.
Smoliner
,
P.
Hinterdorfer
,
S. J.
Rosner
,
H.
Tanbakuchi
,
P.
Kabos
, and
F.
Kienberger
,
Rev. Sci. Instrum.
81
,
113701
(
2010
).
15.
A. O.
Oladipo
,
M.
Kasper
,
S.
Lavdas
,
G.
Gramse
,
F.
Kienberger
, and
N. C.
Panoiu
,
Appl. Phys. Lett.
103
,
213106
(
2013
).
16.
M.
Kasper
,
F.
Kienberger
,
R.
Feger
, and
A.
Stelzer
,
Agilent EMPro-SMM Application Note
(
Agilent Technologies, Inc.
2013
).
You do not currently have access to this content.