We report thermoelectric (TE) properties of dense samples of colusites Cu26V2M6S32 (M = Ge, Sn), most of which are composed of earth-abundant elements; Cu and S. The combination of p-type metallic conduction and large thermopowers greater than 200 μV/K leads to high TE power factors of 0.61 and 0.48 mW/K2 m at 663 K for M = Ge and Sn samples, respectively. Furthermore, the lattice thermal conductivity is smaller than 0.6 W/Km over the temperature range from 350 K to 663 K due to the structural complexity. As a consequence, the values of dimensionless TE figure of merit ZT for M = Ge and Sn reach 0.73 and 0.56 at 663 K, respectively. Thus, the colusites are promising candidates for environmental friendly TE materials usable in the range of 500–700 K.

1.
L. E.
Bell
,
Science
321
,
1457
(
2008
).
2.
G.
Dennler
,
R.
Chmielowski
,
S.
Jacob
,
F.
Capet
,
P.
Roussel
,
S.
Zastrow
,
K.
Nielsch
,
I.
Opahle
, and
G. K. H.
Madsen
, “Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials?”
Adv. Energy Mater.
(published online).
3.
K.
Suekuni
,
K.
Tsuruta
,
T.
Ariga
, and
M.
Koyano
,
Appl. Phys. Express
5
,
051201
(
2012
).
4.
X.
Lu
,
D. T.
Morelli
,
Y.
Xia
,
F.
Zhou
,
V.
Ozolins
,
H.
Chi
,
X.
Zhou
, and
C.
Uher
,
Adv. Energy Mater.
3
,
342
(
2013
).
5.
K.
Suekuni
,
K.
Tsuruta
,
M.
Kunii
,
H.
Nishiate
,
E.
Nishibori
,
S.
Maki
,
M.
Ohta
,
A.
Yamamoto
, and
M.
Koyano
,
J. Appl. Phys.
113
,
043712
(
2013
).
6.
J.
Heo
,
G.
Laurita
,
S.
Muir
,
M. A.
Subramanian
, and
D. A.
Keszler
,
Chem. Mater.
26
,
2047
(
2014
).
7.
Y.
He
,
T.
Day
,
T.
Zhang
,
H.
Liu
,
X.
Shi
,
L.
Chen
, and
G. J.
Snyder
,
Adv. Mater.
26
,
3974
(
2014
).
8.
K.
Suekuni
,
Y.
Tomizawa
,
T.
Ozaki
, and
M.
Koyano
,
J. Appl. Phys.
115
,
143702
(
2014
).
9.
F. J.
DiSalvo
,
Science
285
,
703
(
1999
).
10.
E.
Lara-Curzio
,
A. F.
May
,
O.
Delaire
,
M. A.
McGuire
,
X.
Lu
,
C.-Y.
Liu
,
E. D.
Case
, and
D. T.
Morelli
,
J. Appl. Phys.
115
,
193515
(
2014
).
11.
D. R.
Brown
,
T.
Day
,
T.
Caillat
, and
G. J.
Snyder
,
J. Electron. Mater.
42
,
2014
(
2013
).
12.
P. G.
Spry
,
S.
Merlino
,
S.
Wang
,
X.
Zhang
, and
P. R.
Buseck
,
Am. Mineral.
79
,
750
(
1994
).
13.
O. V.
Frank-Kamenetskaya
,
I. V.
Rozhdestvenskaya
, and
L. A.
Yanulova
,
J. Struct. Chem.
43
,
89
(
2002
).
14.
K.
Suekuni
,
F. S.
Kim
, and
T.
Takabatake
,
J. Appl. Phys.
116
,
063706
(
2014
).
15.
T.
Ozaki
,
Phys. Rev. B
67
,
155108
(
2003
).
16.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
18.
O.
Delaire
,
A. F.
May
,
M. A.
McGuire
,
W. D.
Porter
,
M. S.
Lucas
,
M. B.
Stone
,
D. L.
Abernathy
,
V. A.
Ravi
,
S. A.
Firdosy
, and
G. J.
Snyder
,
Phys. Rev. B
80
,
184302
(
2009
).
19.
F.
Gascoin
and
A.
Maignan
,
Chem. Mater.
23
,
2510
(
2011
).
20.
H.
Liu
,
X.
Shi
,
F.
Xu
,
L.
Zhang
,
W.
Zhang
,
L.
Chen
,
Q.
Li
,
C.
Uher
,
T.
Day
, and
G. J.
Snyder
,
Nat. Mater.
11
,
422
(
2012
).
You do not currently have access to this content.