Fluorescence sensing and fluorescence correlation spectroscopy (FCS) are powerful methods to detect and characterize single molecules; yet, their use has been restricted by expensive and complex optical apparatus. Here, we present a simple integrated design using a self-assembled bi-dimensional array of microspheres to realize multi-focus parallel detection scheme for FCS. We simultaneously illuminate and collect the fluorescence from several tens of microspheres, which all generate their own photonic nanojet to efficiently excite the molecules and collect the fluorescence emission. Each photonic nanojet contributes to the global detection volume, reaching FCS detection volumes of several tens of femtoliters while preserving the fluorescence excitation and collection efficiencies. The microspheres photonic nanojets array enables FCS experiments at low picomolar concentrations with a drastic reduction in apparatus cost and alignment constraints, ideal for microfluidic chip integration.

1.
M.
Sauer
,
K. H.
Drexhage
,
C.
Zander
, and
J.
Wolfrum
,
Chem. Phys. Lett.
254
,
223
(
1996
).
2.
M.
Eigen
and
R.
Rigler
,
Proc. Natl. Acad. Sci. U. S. A.
91
,
5740
(
1994
).
3.
S.
Maiti
,
U.
Haupts
, and
W. W.
Webb
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
11753
(
1997
).
4.
R.
Rigler
,
Ü.
Mets
,
J.
Widengren
, and
P.
Kask
,
Eur. Biophys. J.
22
,
169
(
1993
).
5.
J.
Wenger
and
H.
Rigneault
,
Int. J. Mol. Sci.
11
,
206
(
2010
).
6.
T.
Sonehara
,
T.
Anazawa
, and
K.
Uchida
,
Anal. Chem.
78
,
8395
(
2006
).
7.
E.
Olson
,
R.
Torres
, and
M. J.
Levene
,
Biomed. Opt. Express
4
,
1074
(
2013
).
8.
N. K.
Singh
,
J. V.
Chacko
,
V. K. A.
Sreenivasan
,
S.
Nag
, and
S.
Maiti
,
J. Biomed. Opt.
16
,
025004
(
2011
).
9.
T.
Ruckstuhl
,
J.
Enderlein
,
S.
Jung
, and
S.
Seeger
,
Anal. Chem.
72
,
2117
(
2000
).
10.
J.
Ries
,
T.
Ruckstuhl
,
D.
Verdes
, and
P.
Schwille
,
Biophys. J.
94
,
221
(
2008
).
11.
K.
Garai
,
M.
Muralidhar
, and
S.
Maiti
,
Appl. Opt.
45
,
7538
(
2006
).
12.
P.
Haas
,
P.
Then
,
A.
Wild
,
W.
Grange
,
S.
Zorman
,
M.
Hegner
,
M.
Calame
,
U.
Aebi
,
J.
Flammer
, and
B.
Hecht
,
Anal. Chem.
82
,
6299
(
2010
).
13.
H.
Aouani
,
F.
Deiss
,
J.
Wenger
,
P.
Ferrand
,
N.
Sojic
, and
H.
Rigneault
,
Opt. Express
17
,
19085
(
2009
).
14.
A.
Orth
and
K. B.
Crozier
,
Opt. Express
22
,
18101
(
2014
).
15.
J.
Wenger
,
D.
Gérard
,
H.
Aouani
, and
H.
Rigneault
,
Anal. Chem.
80
,
6800
(
2008
).
16.
J. J.
Schwartz
,
S.
Stavrakis
, and
S. R.
Quake
,
Nat. Nanotechnol.
5
,
127
(
2010
).
17.
D.
Gérard
,
A.
Devilez
,
H.
Aouani
,
B.
Stout
,
N.
Bonod
,
J.
Wenger
,
E.
Popov
, and
H.
Rigneault
,
J. Opt. Soc. Am. B
26
,
1473
(
2009
).
18.
Z.
Chen
,
A.
Taflove
, and
V.
Backman
,
Opt. Express
12
,
1214
(
2004
).
19.
X.
Li
,
Z.
Chen
,
A.
Taflove
, and
V.
Backman
,
Opt. Express
13
,
526
(
2005
).
20.
A.
Heifetz
,
S. C.
Kong
,
A. V.
Sahakian
,
A.
Taflove
, and
V.
Backman
,
J. Comput. Theor. Nanosci.
6
,
1979
(
2009
).
21.
P.
Ferrand
,
J.
Wenger
,
M.
Pianta
,
H.
Rigneault
,
A.
Devilez
,
B.
Stout
,
N.
Bonod
, and
E.
Popov
,
Opt. Express
16
,
6930
(
2008
).
22.
M. S.
Kim
,
T.
Scharf
,
S.
Muhlig
,
C.
Rockstuhl
, and
H. P.
Herzig
,
Appl. Phys. Lett.
98
,
191114
(
2011
).
23.
A.
Darafsheh
,
A.
Fardad
,
N. M.
Fried
,
A. N.
Antoszyk
,
H. S.
Ying
, and
V. N.
Astratov
,
Opt. Express
19
,
3440
(
2011
).
24.
S.
Yang
and
V. N.
Astratov
,
Appl. Phys. Lett.
92
,
261111
(
2008
).
25.
A.
Darafsheh
,
G. F.
Walsh
,
L. D.
Negro
, and
V. N.
Astratov
,
Appl. Phys. Lett.
101
,
141128
(
2012
).
26.
M.
Grzelczak
,
J.
Vermant
,
E. M.
Furst
, and
L. M.
Liz-Marzan
,
ACS Nano
4
,
3591
(
2010
).
27.
M.
Brinkmeier
,
K.
Dörre
,
J.
Stephan
, and
M.
Eigen
,
Anal. Chem.
71
,
609
(
1999
).
28.
P. S.
Dittrich
and
P.
Schwille
,
Anal. Chem.
74
,
4472
(
2002
).
29.
T.
Dertinger
,
V.
Pacheco
,
I. von der
Hocht
,
R.
Hartmann
,
I.
Gregor
, and
J.
Enderlein
,
Chem. Phys. Chem.
8
,
433
(
2007
).
30.
P.
Ghenuche
,
H.
Rigneault
, and
J.
Wenger
,
Opt. Express
20
,
28379
(
2012
).
You do not currently have access to this content.