The thermoelectric (TE) figure of merit ZT of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells is calculated for thicknesses below 10 nm, for which hybridization of the surface states as well as quantum confinement in the bulk are individually predicted to enhance ZT. Here, the question is addressed what ZT can be expected from coexisting surface and bulk states in such quantum wells. It is demonstrated that the parallel contributing bulk and surface channels tend to cancel each other out. This is because the surface-to-volume ratios of the thin films prevent the domination of transport through a single channel and because the individual bulk and surface ZTs are optimized at different Fermi levels.
References
1.
L. D.
Hicks
and M. S.
Dresselhaus
, Phys. Rev. B
47
, 12727
(1993
).2.
H.
Zhang
, C.
Liu
, X.
Qi
, X.
Dai
, Z.
Fang
, and S.
Zhang
, Nat. Phys.
5
, 438
(2009
).3.
B. A.
Bernevig
, Topological Insulators and Topological Superconductors
(Princeton University Press
, Princeton
, 2013
).4.
Y.
Ando
, J. Phys. Soc. Jpn.
82
, 102001
(2013
).5.
O. A.
Tretiakov
, A.
Abanov
, and J.
Sinova
, J. Appl. Phys.
111
, 07E319
(2012
).6.
P.
Ghaemi
, R. S. K.
Mong
, and J. E.
Moore
, Phys. Rev. Lett.
105
, 166603
(2010
).7.
Y.
Xu
, Z.
Gan
, and S.
Zhang
, Phys. Rev. Lett.
112
, 226801
(2014
).8.
Y.
Hor
, A.
Richardella
, P.
Roushan
, Y.
Xia
, J.
Checkelsky
, A.
Yazdani
, M.
Hasan
, N.
Ong
, and R.
Cava
, Phys. Rev. B
79
, 195208
(2009
).9.
H. J.
Goldsmid
, Introduction to Thermoelectricity
(Springer-Verlag
, Berlin, Heidelberg, Germany
, 2010
).10.
F.
Rittweger
, N. F.
Hinsche
, P.
Zahn
, and I.
Mertig
, Phys. Rev. B
89
, 035439
(2014
).11.
J.
Zhou
and R.
Yang
, J. Appl. Phys.
110
, 084317
(2011
).12.
D. K. C.
MacDonald
, Thermoelectricity: An Introduction to the Principles
(John Wiley & Sons, Inc.
, New York, London
, 1962
).13.
See supplementary material at http://dx.doi.org/10.1063/1.4896680 for compiling the used model parameters.
14.
L. D.
Hicks
and M. S.
Dresselhaus
, Phys. Rev. B
47
, 16631
(1993
).15.
J. E.
Cornett
and O.
Rabin
, Phys. Rev. B
84
, 205410
(2011
).16.
J. E.
Cornett
and O.
Rabin
, Appl. Phys. Lett.
98
, 182104
(2011
).17.
R.
Takahashi
and S.
Murakami
, Semicond. Sci. Technol.
27
, 124005
(2012
).18.
O. V.
Yazyev
, J. E.
Moore
, and S. G.
Louie
, Phys. Rev. Lett.
105
, 266806
(2010
).19.
Y.-Y.
Li
, G.
Wang
, X.-G.
Zhu
, M.-H.
Liu
, C.
Ye
, X.
Chen
, Y.-Y.
Wang
, K.
He
, L.-L.
Wang
, X.-C.
Ma
et al., Adv. Mater.
22
, 4002
(2010
).20.
Y.
Jiang
, Y.
Wang
, M.
Chen
, Z.
Li
, C.
Song
, K.
He
, L.
Wang
, X.
Chen
, X.
Ma
, and Q.
Xue
, Phys. Rev. Lett.
108
, 016401
(2012
).21.
T.
Humphrey
and H.
Linke
, Phys. Rev. Lett.
94
, 096601
(2005
).22.
N.
Peranio
, O.
Eibl
, and J.
Nurnus
, J. Appl. Phys.
100
, 114306
(2006
).23.
S.
Zastrow
, J.
Gooth
, T.
Boehnert
, S.
Heiderich
, W.
Toellner
, S.
Heimann
, S.
Schulz
, and K.
Nielsch
, Semicond. Sci. Technol.
28
, 035010
(2013
).24.
A.
Boulouz
, S.
Chakraborty
, A.
Giani
, F. Pascal
Delannoy
, A.
Boyer
, and J.
Schumann
, J. Appl. Phys.
89
, 5009
(2001
).25.
J.
Gooth
, B.
Hamdou
, A.
Dorn
, R.
Zierold
, and K.
Nielsch
, Appl. Phys. Lett.
104
, 243115
(2014
).26.
X.
Yu
, L.
He
, M.
Lang
, W.
Jiang
, F.
Xiu
, Z.
Liao
, Y.
Wang
, X.
Kou
, P.
Zhang
, J.
Tang
, G.
Huang
, J.
Zou
, and K. L.
Wang
, Nanotechnology
24
, 015705
(2012
).27.
Y.
Wang
, F.
Xiu
, L.
Cheng
, L.
He
, M.
Lang
, J.
Tang
, X.
Kou
, X.
Yu
, X.
Jiang
, Z.
Chen
, J.
Zou
, and K. L.
Wang
, Nano Lett.
12
, 1170
(2012
).28.
A.
Johannes
, R.
Niepelt
, M.
Gnauck
, and C.
Ronning
, Appl. Phys. Lett.
99
, 252105
(2011
).29.
W.
Paschoal
, S.
Kumar
, C.
Borschel
, P.
Wu
, C. M.
Canali
, C.
Ronning
, L.
Samuelson
, and H.
Pettersson
, Nano Lett.
12
, 4838
(2012
).30.
S.
Kumar
, W.
Paschoal
, Jr., A.
Johannes
, D.
Jacobsson
, C.
Borschel
, A.
Pertsova
, C.-H.
Wang
, M.-K.
Wu
, C. M.
Canali
, C.
Ronning
, L.
Samuelson
, and H.
Pettersson
, Nano Lett.
13
, 5079
(2013
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.