We calculate the diffusion barrier of fluorine adatoms on doped graphene in the diluted limit using Density Functional Theory. We found that the barrier Δ strongly depends on the magnitude and character of the graphene's doping (δn): it increases for hole doping (δn < 0) and decreases for electron doping (δn > 0). Near the neutrality point the functional dependence can be approximately by Δ = Δ0αδn, where α ≃ 6 × 10−12 meV cm2. This effect leads to significant changes of the diffusion constant with doping even at room temperature and could also affect the low temperature diffusion dynamics due to the presence of substrate induced charge puddles. In addition, this might open up the possibility to engineer the F dynamics on graphene by using local gates.

1.
B.
Uchoa
,
V. N.
Kotov
,
N. M. R.
Peres
, and
A. H. Castro
Neto
,
Phys. Rev. Lett.
101
,
026805
(
2008
).
2.
O. V.
Yazyev
and
L.
Helm
,
Phys. Rev. B
75
,
125408
(
2007
).
3.
J. J.
Palacios
,
J.
Fernández-Rossier
, and
L.
Brey
,
Phys. Rev. B
77
,
195428
(
2008
).
4.
O. V.
Yazyev
,
Rep. Prog. Phys.
73
,
056501
(
2010
).
5.
J.
Sofo
,
G.
Usaj
,
P. S.
Cornaglia
,
A.
Suarez
,
A. D.
Hernández-Nieves
, and
C. A.
Balseiro
,
Phys. Rev. B
85
,
115405
(
2012
).
6.
M.
Vojta
and
L.
Fritz
,
Phys. Rev. B
70
,
094502
(
2004
).
7.
T. O.
Wehling
,
A. V.
Balatsky
,
M. I.
Katsnelson
,
A. I.
Lichtenstein
, and
A.
Rosch
,
Phys. Rev. B
81
,
115427
(
2010
).
8.
P. S.
Cornaglia
,
G.
Usaj
, and
C. A.
Balseiro
,
Phys. Rev. Lett.
102
,
046801
(
2009
).
9.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
van Wees
,
Nature
448
,
571
(
2007
).
10.
A. H. Castro
Neto
and
F.
Guinea
,
Phys. Rev. Lett.
103
,
026804
(
2009
).
11.
W.
Han
and
R. K.
Kawakami
,
Phys. Rev. Lett.
107
,
047207
(
2011
).
12.
D.
Kochan
,
M.
Gmitra
, and
J.
Fabian
,
Phys. Rev. Lett.
112
,
116602
(
2014
).
13.
P. M.
Ostrovsky
,
I. V.
Gornyi
, and
A. D.
Mirlin
,
Phys. Rev. B
74
,
235443
(
2006
).
14.
S.
Gattenloehner
,
W. R.
Hannes
,
P. M.
Ostrovsky
,
I. V.
Gornyi
,
A. D.
Mirlin
, and
M.
Titov
,
Phys. Rev. Lett.
112
,
026809
(
2014
).
15.
S.
Roche
,
N.
Leconte
,
F.
Ortmann
,
A.
Lherbier
,
D.
Soriano
, and
J.-C.
Charlier
,
Solid State Commun.
152
,
1404
(
2012
).
16.
X.
Hong
,
S. H.
Cheng
,
C.
Herding
, and
J.
Zhu
,
Phys. Rev. B
83
,
085410
(
2011
).
17.
G.
Usaj
,
P. S.
Cornaglia
, and
C. A.
Balseiro
,
Phys. Rev. B
89
,
085405
(
2014
).
18.
A.
Cresti
,
F.
Ortmann
,
T.
Louvet
,
D.
Van Tuan
, and
S.
Roche
,
Phys. Rev. Lett.
110
,
196601
(
2013
).
19.
S. Das
Sarma
,
S.
Adam
,
E. H.
Hwang
, and
E.
Rossi
,
Rev. Mod. Phys.
83
,
407
(
2011
).
20.
E. J.
Duplock
,
M.
Scheffler
, and
P. J. D.
Lindan
,
Phys. Rev. Lett.
92
,
225502
(
2004
).
21.
J. C.
Meyer
,
C. O.
Girit
,
M. F.
Crommie
, and
A.
Zettl
,
Nature
454
,
319
(
2008
).
22.
K. T.
Chan
,
J. B.
Neaton
, and
M. L.
Cohen
,
Phys. Rev. B
77
,
235430
(
2008
).
23.
T. O.
Wehling
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
80
,
085428
(
2009
).
24.
T. O.
Wehling
,
H. P.
Dahal
,
A. I.
Lichtenstein
,
M. I.
Katsnelson
,
H. C.
Manoharan
, and
A. V.
Balatsky
,
Phys. Rev. B
81
,
085413
(
2010
).
25.
D. W.
Boukhvalov
and
M. I.
Katsnelson
,
J. Phys.: Condens. Matter
21
,
344205
(
2009
).
26.
Z. M.
Ao
and
F. M.
Peeters
,
Appl. Phys. Lett.
96
,
253106
(
2010
).
27.
P. O.
Lehtinen
,
A. S.
Foster
,
A.
Ayuela
,
A.
Krasheninnikov
,
K.
Nordlund
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
91
,
017202
(
2003
).
28.
J. O.
Sofo
,
A. M.
Suarez
,
G.
Usaj
,
P. S.
Cornaglia
,
A. D.
Hernández-Nieves
, and
C. A.
Balseiro
,
Phys. Rev. B
83
,
081411
(
2011
).
29.
K. T.
Chan
,
H.
Lee
, and
M. L.
Cohen
,
Phys. Rev. B
84
,
165419
(
2011
).
30.
A. M.
Suarez
,
L. R.
Radovic
,
E.
Bar-Ziv
, and
J. O.
Sofo
,
Phys. Rev. Lett.
106
,
146802
(
2011
).
31.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S. de
Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
34.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
35.

The Quantum Expresso package allows for the used of fractional filling. Present exchange correlation functional only give approximate results for fractional occupations, however, it gives an estimate of the overall trend supported by the cases of integer filling.

36.

It should be mentioned that while the bonding of the adatom is different in the two cases, the diffusion process in both cases involve the on top and bridge positions as initial and transition states (though with their role exchanged for the O). Also, in the two cases there is a charge transfer process to the adatom involved.

You do not currently have access to this content.