Nanomechanical motion of bacteria adhered to a chemically functionalized silicon surface is studied by means of a microcantilever. A non-specific binding agent is used to attach Escherichia coli (E. coli) to the surface of a silicon microcantilever. The microcantilever is kept in a liquid medium, and its nanomechanical fluctuations are monitored using an optical displacement transducer. The motion of the bacteria couples efficiently to the microcantilever well below its resonance frequency, causing a measurable increase in the microcantilever fluctuations. In the time domain, the fluctuations exhibit large-amplitude low-frequency oscillations. In corresponding frequency-domain measurements, it is observed that the mechanical energy is focused at low frequencies with a 1/fα-type power law. A basic physical model is used for explaining the observed spectral distribution of the mechanical energy. These results lay the groundwork for understanding the motion of microorganisms adhered to surfaces and for developing micromechanical sensors for bacteria.

1.
A. E.
Pelling
,
S.
Sehati
,
E. B.
Gralla
,
J. S.
Valentine
, and
J. K.
Gimzewski
,
Science
305
,
1147
(
2004
).
2.
M.
Arnoldi
,
M.
Fritz
,
E.
Bäuerlein
,
M.
Radmacher
,
E.
Sackmann
, and
A.
Boulbitch
,
Phys. Rev. E
62
,
1034
(
2000
).
3.
P. C.
Zhang
,
A. M.
Keleshian
, and
F.
Sachs
,
Nature
413
,
428
(
2001
).
4.
G.
Jiang
,
G.
Giannone
,
D. R.
Critchley
,
E.
Fukumoto
, and
M. P.
Sheetz
,
Nature
424
,
334
(
2003
).
5.
G.
Bao
and
S.
Suresh
,
Nat. Mater.
2
,
715
(
2003
).
6.
H.
Frauenfelder
,
P. G.
Wolynes
, and
R. H.
Austin
,
Rev. Mod. Phys.
71
,
S419
(
1999
).
7.
K. L.
Visick
and
C.
Fuqua
,
J. Bacteriol.
187
,
5507
(
2005
).
8.
M. C.
Callegan
,
S. T.
Kane
,
D. C.
Cochran
,
B.
Novosad
,
M. S.
Gilmore
,
M.
Gominet
, and
D.
Lereclus
,
Invest. Ophthalmol. Visual Sci.
46
,
3233
(
2005
).
9.
J. R.
Moffitt
,
Y. R.
Chemla
,
S. B.
Smith
, and
C.
Bustamante
,
Annu. Rev. Biochem.
77
,
205
(
2008
).
10.
N. V.
Lavrik
,
M. J.
Sepaniak
, and
P. G.
Datskos
,
Rev. Sci. Instrum.
75
,
2229
(
2004
).
11.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
,
061101
(
2005
).
12.
M.
Radmacher
,
M.
Fritz
,
H. G.
Hansma
, and
P. K.
Hansma
,
Science
265
,
1577
(
1994
).
13.
N. H.
Thomson
,
M.
Fritz
,
M.
Radmacher
,
J. P.
Cleveland
,
C. F.
Schmidt
, and
P. K.
Hansma
,
Biophys. J.
70
,
2421
(
1996
).
14.
D.
Ramos
,
J.
Tamayo
,
J.
Mertens
,
M.
Calleja
, and
A.
Zaballos
,
J. Appl. Phys.
100
,
106105
(
2006
).
15.
T. P.
Burg
,
M.
Godin
,
S. M.
Knudsen
,
W.
Shen
,
G.
Carlson
,
J. S.
Foster
,
K.
Babcock
, and
S. R.
Manalis
,
Nature
446
,
1066
(
2007
).
16.
J. L.
Arlett
,
E. B.
Myers
, and
M. L.
Roukes
,
Nat. Nanotechnol.
6
,
203
(
2011
).
17.
G.
Wu
,
R. H.
Datar
,
K. M.
Hansen
,
T.
Thundat
,
R. J.
Cote
, and
A.
Majumdar
,
Nat. Biotechnol.
19
,
856
(
2001
).
18.
K. Y.
Gfeller
,
N.
Nugaeva
, and
M.
Hegner
,
Biosens. Bioelectron.
21
,
528
(
2005
).
19.
G.
Longo
and
S.
Kasas
,
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
6
,
230
(
2014
).
20.
G.
Longo
,
L.
Alonso-Sarduy
,
L. M.
Rio
,
A.
Bizzini
,
A.
Trampuz
,
J.
Notz
,
G.
Dietler
, and
S.
Kasas
,
Nat. Nanotechnol.
8
,
522
(
2013
).
21.
G.
Meyer
and
N. M.
Amer
,
Appl. Phys. Lett.
53
,
1045
(
1988
).
22.
N. O.
Azak
,
M. Y.
Shagam
,
D. M.
Karabacak
,
K. L.
Ekinci
,
D. H.
Kim
, and
D. Y.
Jang
,
Appl. Phys. Lett.
91
,
093112
(
2007
).
23.
H. J.
Butt
and
M.
Jaschke
,
Nanotechnology
6
,
1
(
1995
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4895132 for more details regarding the experimental methods and statistical analysis of our data.
25.
M. R.
Paul
,
M. T.
Clark
, and
M. C.
Cross
,
Nanotechnology
17
,
4502
(
2006
).
26.
A.
Labuda
,
J. R.
Bates
, and
P. H.
Grütter
,
Nanotechnology
23
,
025503
(
2012
).
27.
P.
Dutta
and
P. M.
Horn
,
Rev. Mod. Phys.
53
,
497
(
1981
).
28.
J. M.
Hausdorff
and
C. K.
Peng
,
Phys. Rev. E
54
,
2154
(
1996
).
29.
S.
Wang
,
M.
Esfahani
,
U. A.
Gurkan
,
F.
Inci
,
D. R.
Kuritzkes
, and
U.
Demirci
,
Lab Chip
12
,
1508
(
2012
).
30.
S.
Wang
,
F.
Inci
,
T. L.
Chaunzwa
,
A.
Ramanujam
,
A.
Vasudevan
,
S.
Subramanian
,
A. C. F.
Ip
,
B.
Sridharan
,
U. A.
Gurkan
, and
U.
Demirci
,
Int. J. Nanomed.
7
,
2591
(
2012
).
31.
F.
Inci
,
O.
Tokel
,
S.
Wang
,
U. A.
Gurkan
,
S.
Tasoglu
,
D. R.
Kuritzkes
, and
U.
Demirci
,
ACS Nano
7
,
4733
(
2013
).
32.
O.
Tokel
,
F.
Inci
, and
U.
Demirci
,
Chem. Rev.
114
,
5728
(
2014
).
33.
V.
Mani
,
S.
Wang
,
F.
Inci
,
G. D.
Libero
,
A.
Singhal
, and
U.
Demirci
, “
Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care
,”
Adv. Drug Deliv. Rev.
(to be published).
34.
H.
Shafiee
,
M.
Jahangir
,
F.
Inci
,
S.
Wang
,
R. B. M.
Willenbrecht
,
F. F.
Giguel
,
A. M. N.
Tsibris
,
D. R.
Kuritzkes
, and
U.
Demirci
,
Small
9
,
2553
(
2013
).
35.
K. L.
Ekinci
,
V.
Yakhot
,
S.
Rajauria
,
C.
Colosqui
, and
D. M.
Karabacak
,
Lab Chip
10
,
3013
(
2010
).
36.
K. L.
Ekinci
,
Y. T.
Yang
, and
M. L.
Roukes
,
J. Appl. Phys.
95
,
2682
(
2004
).
37.
S. Q.
Wang
,
F.
Inci
,
G.
De Libero
,
A.
Singhal
, and
U.
Demirci
,
Biotechnol. Adv.
31
(
4
),
438
449
(
2013
).
38.
N. G.
Durmus
,
E. N.
Taylor
,
F.
Inci
,
K. M.
Kummer
,
K. M.
Tarquinio
, and
T. J.
Webster
,
Int. J. Nanomed.
7
,
537
(
2012
).

Supplementary Material

You do not currently have access to this content.