Large-grain SiGe-crystal-on-insulator is essential for fabrication of devices such as advanced thin film transistors and/or photosensors. For these purposes, rapid-melting growth of amorphous SiGe stripes (7%–20% Si concentration) on insulating substrates is investigated over a wide range of cooling rates (from 2 to 17 °C/s). The growth features of SiGe change dynamically, depending on the cooling rate. A low cooling rate produces large crystals with laterally graded Si concentration profiles caused by significant Si segregation during solidification. In contrast, a high cooling rate suppresses the Si segregation, but small grains form because of high spontaneous nucleation under super-cooling conditions. By tuning of the cooling rate, moderate super-cooling conditions are obtained as a function of the Si concentration. This controls both the Si segregation and the spontaneous nucleation, and produces large SiGe crystals (∼400 μm length, 7%–20% Si concentration) with three-dimensionally uniform Si profiles.

1.
M.
Miyao
,
E.
Murakami
,
H.
Etoh
,
K.
Nakagawa
, and
A.
Nishida
,
J. Cryst. Growth
111
,
912
(
1991
).
2.
C.
Hyun
,
T.
Nishimura
,
T.
Tabata
,
D.
Zhao
,
K.
Nagashio
, and
A.
Toriumi
,
Appl. Phys. Lett.
102
,
232107
(
2013
).
3.
R.
Zhang
,
J.
Lin
,
X.
Yu
,
M.
Takenaka
, and
S.
Takagi
,
IEEE Trans. Electron Devices
61
,
416
(
2014
).
4.
J.
Liu
,
R.
Camacho-Aguilera
,
J. T.
Bessette
,
X.
Sun
,
X.
Wang
,
Y.
Cai
,
L. C.
Kimerling
, and
J.
Michel
,
Thin Solid Films
520
,
3354
(
2012
).
5.
D.
Lockwood
and
L.
Tsybeskov
,
IEEE J. Sel. Top. Quantum Electron.
20
,
8200807
(
2014
).
6.
J.
Olivares
,
A.
Rodriguez
,
J.
Sangrador
,
T.
Rodriguez
,
C.
Ballesteros
, and
A.
Kling
,
Thin Solid Films
337
,
51
(
1999
).
7.
S.
Yamaguchi
,
N.
Sugii
,
K.
Park
,
K.
Nakagawa
, and
M.
Miyao
,
J. Appl. Phys.
89
,
2091
(
2001
).
8.
C.
Eisele
,
M.
Berger
,
M.
Nerding
,
H. P.
Strunk
,
C. E.
Nebel
, and
M.
Stutzmann
,
Thin Solid Films
427
,
176
(
2003
).
9.
H.
Watakabe
,
T.
Sameshima
,
H.
Kanno
,
T.
Sadoh
, and
M.
Miyao
,
J. Appl. Phys.
95
,
6457
(
2004
).
10.
M.
Kurosawa
,
N.
Kawabata
,
T.
Sadoh
, and
M.
Miyao
,
ECS J. Solid State Sci. Technol.
1
,
P144
(
2012
).
11.
K.
Toko
,
R.
Numata
,
N.
Oya
,
N.
Fukata
,
N.
Usami
, and
T.
Suemasu
,
Appl. Phys. Lett.
104
,
022106
(
2014
).
12.
R.
Matsumura
,
R.
Kato
,
Y.
Tojo
,
M.
Kurosawa
,
T.
Sadoh
, and
M.
Miyao
,
ECS Solid State Lett.
3
,
P61
(
2014
).
13.
E.
Scheil
,
Z. Metallk.
34
,
70
(
1942
).
14.
R.
Matsumura
,
Y.
Tojo
,
M.
Kurosawa
,
T.
Sadoh
,
I.
Mizushima
, and
M.
Miyao
,
Appl. Phys. Lett.
101
,
241904
(
2012
).
15.
R. F.
Wood
,
Appl. Phys. Lett.
37
,
302
(
1980
).
16.
S.
Stiffler
,
M.
Thompson
, and
P.
Peercy
,
Phys. Rev. Lett.
60
,
2519
(
1988
).
17.
M.
Hatano
,
S.
Moon
,
M.
Lee
,
K.
Suzuki
, and
C.
Grigoropoulos
,
J. Appl. Phys.
87
,
36
(
2000
).
18.
M.
Miyao
,
T.
Tanaka
,
K.
Toko
, and
M.
Tanaka
,
Appl. Phys. Express
2
,
045503
(
2009
).
19.
P. M.
Mooney
,
F. H.
Dacol
,
J. C.
Tsang
, and
J. O.
Chu
,
Appl. Phys. Lett.
62
,
2069
(
1993
).
20.
A. V.
Baranov
,
A. V.
Fedorov
,
T. S.
Perova
,
R. A.
Moore
,
V.
Yam
,
D.
Bouchier
,
V. Le
Thanh
, and
K.
Berwick
,
Phys. Rev. B
73
,
075322
(
2006
).
21.
Y.
Xiao
,
J.
Taguchi
,
T.
Motooka
, and
S.
Munetoh
,
Jpn. J. Appl. Phys., Part 1
51
,
035601
(
2012
).
You do not currently have access to this content.