Vertical gate-all-around (GAA) junctionless nanowire transistors (JNTs) with different diameters and underlap lengths are investigated using three-dimensional device simulations. The source-side diameter determines the on-current and drain-induced barrier lowering characteristics, whereas the drain-side diameter controls the band-to-band tunneling current during off-state conditions. The JNTs with short drain-side underlap lengths decrease the source/drain series resistance but increase the off-current values, especially due to large band-gap narrowing effects at the drain extension region. Proper device design of vertical GAA JNTs considering the device structure and underlap is needed to improve both on/off and short channel characteristics.

1.
K. H.
Yeo
,
S. D.
Suk
,
M.
Li
,
Y.-Y.
Yeoh
,
K. H.
Cho
,
K.-H.
Hong
,
S. K.
Yun
,
M. S.
Lee
,
N.
Cho
,
K.
Lee
,
D.
Hwang
,
B.
Park
,
D.-W.
Kim
,
D.
Park
, and
B.-I.
Ryu
,
Tech. Dig. Int. Electron Devices Meet.
2006
,
1
4
.
2.
S.
Bangsaruntip
,
G. M.
Cohen
,
A.
Majumdar
,
Y.
Zhang
,
S. U.
Engelmann
,
N. C. M.
Fuller
,
L. M.
Gignac
,
S.
Mittal
,
J. S.
Newbury
,
M.
Guillorn
,
T.
Barwicz
,
L.
Sekaric
,
M. M.
Frank
, and
J. W.
Sleight
,
Tech. Dig. Int. Electron Devices Meet.
2009
,
297
300
.
3.
S.-G.
Hur
,
J.-G.
Yang
,
S.-S.
Kim
,
D.-K.
Lee
,
T.
An
,
K.-J.
Nam
,
S.-J.
Kim
,
Z.
Wu
,
W.
Lee
,
U.
Kwon
,
K.-H.
Lee
,
Y.
Park
,
W.
Yang
,
J.
Choi
,
H.-K.
Kang
, and
E. S.
Jung
,
Tech. Dig. Int. Electron Devices Meet.
2013
,
649
652
.
4.
B.
Sorée
,
W.
Magnus
, and
G.
Pourtois
,
J. Comput. Electron.
7
,
380
383
(
2008
).
5.
B.
Sorée
and
W.
Magnus
,
ULIS
10
,
245
248
(
2009
).
6.
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
, and
J.-P.
Colinge
,
Appl. Phys. Lett.
94
,
053511
(
2009
).
7.
J.-P.
Colinge
,
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
,
P.
Razavi
,
B.
O'Neill
,
A.
Blake
,
M.
White
,
A.-M.
Kelleher
,
B.
McCarthy
, and
R.
Murphy
,
Nat. Nanotechnol.
5
,
225
229
(
2010
).
8.
J.
Zhuge
,
R.
Wang
,
R.
Huang
,
X.
Zhang
, and
Y.
Wang
,
IEEE Trans. Electron Devices
55
,
2142
2147
(
2008
).
9.
J.
Zou
,
Q.
Xu
,
J.
Luo
,
R.
Wang
,
R.
Huang
, and
Y.
Wang
,
IEEE Trans. Electron Devices
58
,
3379
3387
(
2011
).
10.
G.
Kaushal
,
S. K.
Manhas
,
S.
Maheshwaram
, and
S.
Dasgupta
,
J. Comput. Electron.
12
,
306
315
(
2013
).
11.
B.
Yang
,
K. D.
Buddharaju
,
S. H. G.
Teo
,
N.
Singh
,
G. Q.
Lo
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
29
,
791
793
(
2008
).
12.
H.
Takato
,
K.
Sunouchi
,
N.
Okabe
,
A.
Nitayama
,
K.
Heida
,
F.
Horiguchi
, and
F.
Masuoka
,
Tech. Dig. Int. Electron Devices Meet.
1988
,
222
225
.
13.
K.
Sunouchi
,
H.
Takato
,
N.
Okabe
,
T.
Yamada
,
T.
Ozaki
,
S.
Inoue
,
K.
Hashimoto
,
K.
Hieda
,
A.
Nitayama
,
F.
Horiguchi
, and
F.
Masuoka
,
Tech. Dig. Int. Electron Devices Meet.
1989
,
23
26
.
14.
C.-K.
Baek
,
S.
Park
,
M.-D.
Ko
,
T.
Rim
,
S.
Choi
, and
Y.-H.
Jeong
,
J. Appl. Phys.
112
,
034513
(
2012
).
15.
Synopsys
,
Sentaurus Device User Guide
(
Mountain View
,
CA
,
2013
).
16.
S.
Gundapaneni
,
M.
Bajaj
,
R. K.
Pandey
,
K. V. R. M.
Murali
,
S.
Ganguly
, and
A.
Kottantharayil
,
IEEE Trans. Electron Devices
59
,
1023
1029
(
2012
).
17.
D.-I.
Moon
,
S.-J.
Choi
,
J. P.
Duarte
, and
Y.-K.
Choi
,
IEEE Trans. Electron Devices
60
,
1355
1360
(
2013
).
You do not currently have access to this content.