Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum . The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by =±2q per photon. We experimentally demonstrate values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

1.
L.
Allen
,
S. M.
Barnett
, and
M. J.
Padgett
,
Optical Angular Momentum
(
Taylor and Francis Group
,
2003
).
2.
C.
Darwin
,
Proc. R. Soc. London, Ser. A
136
,
36
(
1932
).
3.
4.
R. A.
Beth
,
Phys. Rev.
50
,
115
(
1936
).
5.
A.
O'Neil
,
I.
MacVicar
,
L.
Allen
, and
M.
Padgett
,
Phys. Rev. Lett.
88
,
053601
(
2002
).
6.
L.
Allen
,
M. W.
Beijersbergen
,
R.
Spreeuw
, and
J.
Woerdman
,
Phys. Rev. A
45
,
8185
(
1992
).
7.
Y.
Zhao
,
J. S.
Edgar
,
G. D.
Jeffries
,
D.
McGloin
, and
D. T.
Chiu
,
Phys. Rev. Lett.
99
,
073901
(
2007
).
8.
Z.
Bomzon
,
G.
Biener
,
V.
Kleiner
, and
E.
Hasman
,
Opt. Lett.
27
,
1141
(
2002
).
9.
L.
Marrucci
,
C.
Manzo
, and
D.
Paparo
,
Phys. Rev. Lett.
96
,
163905
(
2006
).
10.
G.
Li
,
M.
Kang
,
S.
Chen
,
S.
Zhang
,
E. Y.-B.
Pun
,
K. W.
Cheah
, and
J.
Li
,
Nano Lett.
13
,
4148
(
2013
).
11.
E.
Karimi
,
S. A.
Schulz
,
I. De
Leon
,
H.
Qassim
,
J.
Upham
, and
R. W.
Boyd
,
Light: Sci. Appl.
3
,
e167
(
2014
).
12.
L.
Marrucci
,
E.
Karimi
,
S.
Slussarenko
,
B.
Piccirillo
,
E.
Santamato
,
E.
Nagali
, and
F.
Sciarrino
,
J. Opt.
13
,
064001
(
2011
).
13.
V.
D'Ambrosio
,
N.
Spagnolo
,
L. Del
Re
,
S.
Slussarenko
,
Y.
Li
,
L. C.
Kwek
,
L.
Marrucci
,
S. P.
Walborn
,
L.
Aolita
, and
F.
Sciarrino
,
Nat. Commun.
4
,
2432
(
2013
).
14.
F.
Cardano
,
F.
Massa
,
E.
Karimi
,
S.
Slussarenko
,
D.
Paparo
,
C. de
Lisio
,
F.
Sciarrino
,
E.
Santamato
, and
L.
Marrucci
, preprint arXiv:1403.4857 (
2014
).
15.
F.
Aieta
,
P.
Genevet
,
M. A.
Kats
,
N.
Yu
,
R.
Blanchard
,
Z.
Gaburro
, and
F.
Capasso
,
Nano Lett.
12
,
4932
(
2012
).
16.
S.
Pancharatnam
, in
Proceedings of the Indian Academy of Sciences, Section A
(
Indian Academy of Sciences
,
1956
), Vol.
44
, pp.
247
262
.
17.
M. V.
Berry
,
J. Mod. Opt.
34
,
1401
(
1987
).
18.
E.
Karimi
,
G.
Zito
,
B.
Piccirillo
,
L.
Marrucci
, and
E.
Santamato
,
Opt. Lett.
32
,
3053
(
2007
).
19.
Z.
Sacks
,
D.
Rozas
, and
G.
Swartzlander
, Jr.
,
J. Opt. Soc. Am. B
15
,
2226
(
1998
).
20.
S. W.
Hell
,
Science
316
,
1153
(
2007
).
21.
G.
Gibson
,
J.
Courtial
,
M. J.
Padgett
,
M.
Vasnetsov
,
V.
Pas'ko
,
S. M.
Barnett
, and
S.
Franke-Arnold
,
Opt. Express
12
,
5448
(
2004
).
22.
N.
Bozinovic
,
Y.
Yue
,
Y.
Ren
,
M.
Tur
,
P.
Kristensen
,
H.
Huang
,
A. E.
Willner
, and
S.
Ramachandran
,
Science
340
,
1545
(
2013
).
23.
G.
Vallone
,
V.
D'Ambrosio
,
A.
Sponselli
,
S.
Slussarenko
,
L.
Marrucci
,
F.
Sciarrino
, and
P.
Villoresi
,
Phys. Rev. Lett.
113
,
060503
(
2014
).
24.
M.
Mirhosseini
,
O. S.
Magaña-Loaiza
,
M. N.
O'Sullivan
,
B.
Rodenburg
,
M.
Malik
,
D. J.
Gauthier
, and
R. W.
Boyd
, preprint arXiv:1402.7113 (
2014
).
You do not currently have access to this content.