By forming a highly stable Al2O3 gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (VB) of the MOSFET without a field plate is 600 V at a gate-drain distance (LGD) of 7 μm. We fabricated some MOSFETs for which VB/LGD > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al2O3 was deposited on the C-H surface by atomic layer deposition (ALD) at 450 °C using H2O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

1.
B. A.
Fox
,
M. L.
Hartsell
,
D. M.
Malta
,
H. A.
Wynands
,
C.-T.
Kao
,
L. S.
Piano
,
G. J.
Tessmer
,
R. B.
Henard
,
J. S.
Holmes
,
A. J.
Tessmer
, and
D. L.
Dreifus
,
Diamond Relat. Mater.
4
,
622
(
1995
).
2.
A.
Vescan
,
P.
Gluche
,
W.
Ebert
, and
E.
Kohn
,
IEEE Electron Device Lett.
18
,
222
(
1997
).
3.
K.
Ueda
and
M.
Kasu
,
Jpn. J. Appl. Phys.
49
,
04DF16
(
2010
).
4.
T.
Iwasaki
,
Y.
Hoshino
,
K.
Tsuzuki
,
H.
Kato
,
T.
Makino
,
M.
Ogura
,
D.
Takeuchi
,
H.
Okushi
,
S.
Yamasaki
, and
M.
Hatano
,
IEEE Electron Device Lett.
34
,
1175
(
2013
).
5.
H.
Kawarada
,
M.
Aoki
, and
I.
Itoh
,
Appl. Phys. Lett.
65
,
1563
(
1994
).
6.
7.
P.
Gluche
,
A.
Aleksov
,
A.
Vescan
,
W.
Ebert
, and
E.
Kohn
,
IEEE Electron Device Lett.
18
,
547
(
1997
).
8.
H.
Ishizaka
,
M.
Tachiki
,
K. S.
Song
,
H.
Umezawa
, and
H.
Kawarada
,
Diamond Relat. Mater.
12
,
1800
(
2003
).
9.
K.
Hayashi
,
S.
Yamanaka
,
H.
Okushi
, and
K.
Kajimura
,
Appl. Phys. Lett.
68
,
376
(
1996
).
10.
C. E.
Nebel
,
C.
Sauerer
,
F.
Ertl
,
M.
Stutzmann
,
C. F. O.
Graeff
,
P.
Bergonzo
,
O. A.
Williams
, and
R.
Jackman
,
Appl. Phys. Lett.
79
,
4541
(
2001
).
11.
T.
Yamaguchi
,
E.
Watanabe
,
H.
Osato
,
D.
Tsuya
,
K.
Deguchi
,
T.
Watanabe
,
H.
Takeya
,
Y.
Takano
,
S.
Kurihara
, and
H.
Kawarada
,
J. Phys. Soc. Jpn.
82
,
074718
(
2013
).
12.
D.
Kueck
,
A.
Schmidt
,
A.
Denisenko
, and
E.
Kohn
,
Diamond Relat. Mater.
19
,
166
(
2010
).
13.
M.
Kasu
,
H.
Sato
, and
K.
Hirama
,
Appl. Phys. Express
5
,
025701
(
2012
).
14.
A.
Daicho
,
A.
Hiraiwa
,
S.
Kurihara
,
Y.
Yokoyama
, and
H.
Kawarada
,
J. Appl. Phys.
115
,
223711
(
2014
).
15.
R. S.
Gi
,
K.
Tashiro
,
S.
Tanaka
,
T.
Fujisawa
,
H.
Kimura
,
T.
Kurosu
, and
M.
Iida
,
Jpn. J. Appl. Phys.
38
,
3492
(
1999
).
16.
F.
Maier
,
M.
Riedel
,
B.
Mantel
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
85
,
3472
(
2000
).
17.
K.
Hirama
,
H.
Sato
,
Y.
Harada
,
H.
Yamamoto
, and
M.
Kasu
,
Jpn. J. Appl. Phys.
51
,
090112
(
2012
).
18.
A.
Hiraiwa
,
A.
Daicho
,
S.
Kurihara
,
Y.
Yokoyama
, and
H.
Kawarada
,
J. Appl. Phys.
112
,
124504
(
2012
).
19.
T.
Sakai
,
K. S.
Song
,
H.
Kanazawa
,
Y.
Nakamura
,
H.
Umezawa
,
M.
Tachiki
, and
H.
Kawarada
,
Diam. Relat. Mater.
12
,
1971
(
2003
).
20.
J. B.
Cui
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
81
,
429
(
1998
).
21.
M.
Tachiki
,
Y.
Kaibara
,
Y.
Sumikawa
,
M.
Shigeno
,
H.
Kanazawa
,
T.
Banno
,
K. S.
Song
,
H.
Umezawa
, and
H.
Kawarada
,
Surf. Sci.
581
,
207
(
2005
).
22.
Y.
Jingu
,
K.
Hirama
, and
H.
Kawarada
,
IEEE Trans. Electron Devices
57
,
966
(
2010
).
23.
J.
Barjon
,
E.
Chikoideze
,
F.
Jomard
,
Y.
Dumont
,
M.-A.
Pinault-Thaury
,
R.
Issaoui
,
O.
Brinda
,
J.
Archard
, and
F.
Silva
,
Phys. Status Solidi A
209
,
1750
(
2012
).
24.
M.
Noborio
,
J.
Suda
, and
T.
Kimoto
,
IEEE Electron Device Lett.
30
,
831
(
2009
).
25.
W.-S.
Lee
,
C.-W.
Lin
,
M.-H.
Yang
,
C.-F.
Huang
,
J.
Gong
, and
Z.
Feng
,
IEEE Electron Device Lett.
32
,
360
(
2011
).
26.
T.
Nanjo
,
A.
Imai
,
Y.
Suzuki
,
Y.
Abe
,
T.
Oishi
,
M.
Suita
,
E.
Yagyu
, and
Y.
Tokuda
,
IEEE Trans. Electron Devices
60
,
1046
(
2013
).
You do not currently have access to this content.