This letter presents an algorithm for measuring the relative permittivity of thick dielectric substrates with scanning probe microscopy. Our technique does not rely on a specific type of microscopy setup and does not require expensive numerical field simulations. To demonstrate the versatility of our method, we perform measurements at high frequencies (18 GHz) with a scanning microwave microscope and at low frequencies (2 kHz) with electrostatic force microscopy. In our experiments, we study dielectric materials with epsilon values ranging from 4 (SiO2) to 300 (SrTiO3). For low epsilon values, the accuracy of the algorithm is better than 2% for tips with less than 80 nm tip radius.

1.
C.
Gao
and
X.-D.
Xiang
,
Rev. Sci. Instrum.
69
,
3846
(
1998
).
2.
K.
Lai
,
W.
Kundhikanjana
,
M.
Kelly
, and
Z.
Shen
,
Appl. Phys. Lett.
93
,
123105
(
2008
).
3.
G.
Gramse
,
M.
Kasper
,
L.
Fumagalli
,
G.
Gomila
,
P.
Hinterdorfer
, and
F.
Kienberger
,
Nanotechnology
25
,
145703
(
2014
).
4.
L.
Fumagalli
,
G.
Gramse
,
D.
Esteban-Ferrer
,
M.
Edwards
, and
G.
Gomila
,
Appl. Phys. Lett.
96
,
183107
(
2010
).
5.
G.
Gramse
,
G.
Gomila
, and
L.
Fumagalli
,
Nanotechnology
23
,
205703
(
2012
).
6.
S.
Gómez-Moñivas
,
L.
Froufe-Pérez
,
A. J.
Caamaño
, and
J. J.
Sáenz
,
Appl. Phys. Lett.
79
,
4048
(
2001
).
7.
G.
Sacha
,
E.
Sahagun
, and
J.
Saenz
,
J. Appl. Phys.
101
,
024310
(
2007
).
8.
J.
Niegemann
, in
International Conference on Electromagnetics in Advanced Applications Torino, Italy
(
2013
).
9.
G.
Gomila
,
J.
Toset
, and
L.
Fumagalli
,
J. Appl. Phys.
104
,
024315
(
2008
).
10.
See supplemental material at http://dx.doi.org/10.1063/1.4886965 for details on pseudo-capacitances from EFM and possible sample resonances.
11.
J.
Krupka
,
K.
Derzakowski
,
M.
Tobar
,
J.
Harnett
, and
R. G.
Geyer
,
Meas. Sci. Technol.
10
,
387
(
1999
).
12.
J.
Krupka
,
R. G.
Geyer
,
M.
Kuhn
,
J.
Harnett
, and
J. H.
Hinken
,
IEEE Trans. Microwave Theory Tech.
42
,
1886
(
1994
).

Supplementary Material

You do not currently have access to this content.