We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In0.48Ga0.52P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In0.48Ga0.52P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In0.48Ga0.52P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In0.48Ga0.52P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

1.
A.
Luque
and
A.
Martí
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
2.
T.
Nozawa
and
Y.
Arakawa
,
Appl. Phys. Lett.
98
,
171108
(
2011
).
3.
V.
Popescu
and
A.
Zunger
,
J. Appl. Phys.
112
,
114320
(
2012
).
4.
D.
Guimard
,
R.
Morihara
,
D.
Bordel
,
K.
Tanabe
,
Y.
Wakayama
,
M.
Nishioka
, and
Y.
Arakawa
,
Appl. Phys. Lett.
96
,
203507
(
2010
).
5.
S. A.
Blokhin
,
A. V.
Sakharov
,
A. M.
Nadtochy
,
A. S.
Pauysov
,
M. V.
Maximov
,
N. N.
Ledentsov
,
A. R.
Kovsh
,
S. S.
Mikhrin
,
V. M.
Lantratov
,
S. A.
Mintairov
,
N. A.
Kaluzhniy
, and
M. Z.
Shvarts
,
Semiconductors
43
,
514
(
2009
).
6.
C. G.
Bailey
,
D. V.
Forbes
,
S. J.
Polly
,
Z. S.
Bittner
,
Y.
Dai
,
C.
Mackos
,
R. P.
Raffaelle
, and
S. M.
Hubbard
,
IEEE J. Photovoltaics
2
,
269
(
2012
).
7.
T.
Sugaya
,
O.
Numakami
,
S.
Furue
,
H.
Komaki
,
T.
Amano
,
K.
Matsubara
,
Y.
Okano
, and
S.
Niki
,
Sol. Energy Mater. Sol. Cells
95
,
2920
(
2011
).
8.
Y.
Okada
,
T.
Morioka
,
K.
Yoshida
,
R.
Oshima
,
Y.
Shoji
,
T.
Inoue
, and
T.
Kita
,
J. Appl. Phys.
109
,
024301
(
2011
).
9.
A.
Martí
,
E.
Antolín
,
C. R.
Stanley
,
C. D.
Farmer
,
N.
López
,
P.
Días
,
E.
Cánovas
,
P. G.
Linares
, and
A.
Luque
,
Phys. Rev. Lett.
97
,
247701
(
2006
).
10.
Y.
Okada
,
R.
Oshima
, and
A.
Takata
,
J. Appl. Phys.
106
,
024306
(
2009
).
11.
K.
Tanabe
,
D.
Guimard
,
D.
Bordel
, and
Y.
Arakawa
,
Appl. Phys. Lett.
100
,
193905
(
2012
).
12.
T.
Sugaya
,
R.
Oshima
,
K.
Matsubara
, and
S.
Niki
,
J. Appl. Phys.
114
,
014303
(
2013
).
13.
14.
V.
Popescu
,
G.
Bester
, and
A.
Zunger
,
Appl. Phys. Lett.
95
,
023108
(
2009
).
15.
M. G.
Burt
,
J. Phys.: Condens. Matter
4
,
6651
(
1992
).
16.
B. A.
Foreman
,
Phys. Rev. B
48
,
4964
(
1993
).
17.
B. A.
Foreman
,
Phys. Rev. B
56
,
R12748
(
1997
).
18.
T.
Kotani
,
P.
Lugli
, and
C.
Hamaguchi
,
Appl. Phys. Lett.
103
,
031110
(
2013
).
19.
A. D.
Andreev
,
J. R.
Downes
,
D. A.
Faux
, and
E. P.
OfReilly
,
J. Appl. Phys.
86
,
297
(
1999
).
20.
P.
Enders
,
A.
Bärwolff
,
M.
Woerner
, and
D.
Suisky
,
Phys. Rev. B
51
,
16695
(
1995
).
21.
C.
Hamaguchi
,
Basic Semiconductor Physics
, 2nd ed. (
Springer
,
2010
), Chap. 9, pp.
455
515
.
22.
O.
Stier
,
M.
Grundmann
, and
D.
Bimberg
,
Phys. Rev. B
59
,
5688
(
1999
).
23.
Z. R.
Wasilewski
,
S.
Fafard
, and
J. P.
McCaffrey
,
J. Cryst. Growth
201–202
,
1131
(
1999
).
24.
D.
Leonard
,
K.
Pond
, and
P. M.
Petroff
,
Phys. Rev. B
50
,
11687
(
1994
).
25.
S.
Adachi
,
J. Appl. Phys.
66
,
6030
(
1989
).
26.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
27.
O.
Madelung
,
M.
Schulz
, and
H.
Weiss
,
Landolt-Börnstein, Semiconductors: Physics of Group IV Elements and III–V Compounds
(
Springer
,
1982
), Vol.
17
.
28.
The AM0 and AM1.5G solar spectra were taken from the solar spectra data ASTM E–490 and ASTM G–173 of National Renewable Energy Laboratory.
You do not currently have access to this content.