In this Letter, molybdenum (Mo) is introduced and evaluated as an alternative contact metal to atomically-thin molybdenum disulphide (MoS2), and high-performance field-effect transistors are experimentally demonstrated. In order to understand the physical nature of the interface and highlight the role of the various factors contributing to the Mo-MoS2 contacts, density functional theory (DFT) simulations are employed, which reveal that Mo can form high quality contact interface with monolayer MoS2 with zero tunnel barrier and zero Schottky barrier under source/drain contact, as well as an ultra-low Schottky barrier (0.1 eV) at source/drain-channel junction due to strong Fermi level pinning. In agreement with the DFT simulations, high mobility, high ON-current, and low contact resistance are experimentally demonstrated on both monolayer and multilayer MoS2 transistors using Mo contacts. The results obtained not only reveal the advantages of using Mo as a contact metal for MoS2 but also highlight the fact that the properties of contacts with 2-dimensional materials cannot be intuitively predicted by solely considering work function values and Schottky theory.

1.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
2.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
3.
M. M.
Benameur
,
B.
Radisavljevic
,
J. S.
Héron
,
S.
Sahoo
,
H.
Berger
, and
A.
Kis
,
Nanotechnology
22
,
125706
(
2011
).
4.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
5.
A.
Kuc
,
N.
Zibouche
, and
T.
Heine
,
Phys. Rev. B
83
,
245213
(
2011
).
6.
J.
Kang
,
D.
Sarkar
,
W.
Liu
,
D.
Jena
, and
K.
Banerjee
, in
IEEE International Electron Devices Meeting (2012)
, pp.
407
410
.
7.
W.
Liu
,
J.
Kang
,
W.
Cao
,
D.
Sarkar
,
Y.
Khatami
,
D.
Jena
, and
K.
Banerjee
, in
IEEE International Electron Devices Meeting (2013)
, pp.
499
502
.
8.
Hand Book of Physics, Chemistry
, 59th ed., edited by
R. C.
Weast
(
CRC Press
,
1979
), p.
114
.
9.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
10.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
11.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
12.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
13.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys. Condens. Matter
14
,
2745
(
2002
).
14.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
15.
W.
Liu
,
J.
Kang
,
D.
Sarkar
,
Y.
Khatami
,
D.
Jena
, and
K.
Banerjee
,
Nano Lett.
13
,
1983
(
2013
).
16.
A.
Castellanos-Gomez
,
N.
Agraiüt
, and
G.
Rubio-Bollinger
,
Appl. Phys. Lett.
96
,
213116
(
2010
).
17.
P.
Blake
,
R.
Yang
,
S. V.
Morozov
,
F.
Schedin
,
L. A.
Ponomarenko
,
A. A.
Zhukov
,
R. R.
Nair
,
I. V.
Grigorieva
,
K. S.
Novoselov
, and
A. K.
Geim
,
Solid State Commun.
149
,
1068
(
2009
).
18.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
, in
IEEE International Electron Devices Meeting (2009)
, pp.
1
4
.
19.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
,
ACS Nano
6
,
8563
(
2012
).
20.
S.
Kim
,
A.
Konar
,
W.-S.
Hwang
,
J. H.
Lee
,
J.
Lee
,
J.
Yang
,
C.
Jung
,
H.
Kim
,
J.-B.
Yoo
,
J.-Y.
Choi
,
Y. W.
Jin
,
S. Y.
Lee
,
D.
Jena
,
W.
Choi
, and
K.
Kim
,
Nat. Commun.
3
,
1011
(
2012
).
21.
Y.
Zhang
,
J.
Ye
,
Y.
Matsuhashi
, and
Y.
Iwasa
,
Nano Lett.
12
(
3
),
1136
1140
(
2012
).
22.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Lett.
97
,
143514
(
2010
).
You do not currently have access to this content.