We report on experimental demonstration of high frequency torsional resonators based on microdisk structures enabled by a “smart-cut” 6H-silicon carbide (6H-SiC) technology. Circular microdisks axially supported by pairs of thin tethers, with diameters of ∼5–15 μm, exhibit torsional-mode micromechanical resonances with frequency of ∼1–60 MHz, and quality (Q) factors up to 1280 at room temperature in moderate vacuum (∼10 mTorr). Measured intrinsic thermomechanical vibrations of a microdisk with diameter d ≈ 15.9 μm (and triangular cross-section tethers with width wT ≈ 1.5 μm, length LT ≈ 2 μm, and thickness tT ≈ 0.4 μm) demonstrate a torque resolution of ST1/2 ≈ 3.7 × 10−20 (N m)/√Hz, a force sensitivity of SF1/2 ≈ 5.7fN/√Hz, and an angular displacement sensitivity of Sθ1/2 ≈ 4.0 × 10−8 rad/√Hz. By examining devices with varying disk size, different tether shape, width, and length, and by combining experimental data and theoretical calculations, we depict the scaling pathways for ultrasensitive torsional resonant sensors based on this smart-cut 6H-SiC platform.

1.
A. N.
Cleland
and
M. L.
Roukes
,
Nature
392
,
160
(
1998
).
2.
D.
Rugar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chiu
,
Nature
430
,
329
(
2004
).
3.
J.
Moser
,
J.
Güttinger
,
A.
Eichler
,
M. J.
Esplandiu
,
D. E.
Liu
,
M. I.
Dykman
, and
A.
Bachtold
,
Nat. Nanotechnol.
8
,
493
(
2013
).
4.
R. G.
Knobel
and
A. N.
Cleland
,
Nature
424
,
291
(
2003
).
5.
M. D.
LaHaye
,
O.
Buu
,
B.
Camarota
, and
K. C.
Schwab
,
Science
304
,
74
(
2004
).
6.
Y. T.
Yang
,
C.
Callegari
,
X. L.
Feng
,
K. L.
Ekinci
, and
M. L.
Roukes
,
Nano Lett.
6
,
583
(
2006
).
7.
J.
Chaste
,
A.
Eichler
,
J.
Moser
,
G.
Ceballos
,
R.
Rurali
, and
A.
Bachtold
,
Nat. Nanotechnol.
7
,
301
(
2012
).
8.
R. A.
Johnson
,
Mechanical Filters in Electronics
(
John Wiley & Sons Inc.
,
New York
,
1983
).
9.
A. N.
Cleland
,
Foundations of Nanomechanics
(
Springer
,
Berlin
,
2003
).
10.
D. W.
Carr
,
S.
Evoy
,
L.
Sekaric
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
77
,
1545
(
2000
).
11.
A.
Olkhovets
,
S.
Evoy
,
D. W.
Carr
,
J. M.
Parpia
, and
H. G.
Craighead
,
J. Vac. Sci. Technol., B
18
,
3549
(
2000
).
12.
P.
Mohanty
,
D. A.
Harrington
, and
M. L.
Roukes
,
Physica B
284–288
,
2143
(
2000
).
13.
B. H.
Houston
,
D. M.
Photiadis
,
J. F.
Vignola
,
M. H.
Marcus
,
X.
Liu
,
D.
Czaplewski
,
L.
Sekaric
,
J.
Butler
,
P.
Pehrsson
, and
J. A.
Bucaro
,
Mater. Sci. & Eng. A
370
,
407
(
2004
).
14.
D.
Antonio
and
H.
Pastoriza
,
J. Microelectromech. Syst.
18
,
1396
(
2009
).
15.
X. C.
Zhang
,
E. B.
Myers
,
J. E.
Sader
, and
M. L.
Roukes
,
Nano Lett.
13
,
1528
(
2013
).
16.
J.
Losby
,
J. A. J.
Burgess
,
Z.
Diao
,
D. C.
Fortin
,
W. K.
Hiebert
, and
M. R.
Freeman
,
J. Appl. Phys.
111
,
07D305
(
2012
).
17.
J. P.
Davis
,
D.
Vick
,
D. C.
Fortin
,
J. A. J.
Burgess
,
W. K.
Hiebert
, and
M. R.
Freeman
,
Appl. Phys. Lett.
96
,
072513
(
2010
).
18.
P. H.
Kim
,
C.
Doolin
,
B. D.
Hauer
,
A. J. R.
MacDonald
,
M. R.
Freeman
,
P. E.
Barclay
, and
J. P.
Davis
,
Appl. Phys. Lett.
102
,
053102
(
2013
).
19.
X.
Xia
,
Z.
Zhang
, and
X.
Li
,
J. Micromech. Microeng.
18
,
035028
(
2008
).
20.
O.
Sahin
,
S.
Magonov
,
C.
Su
,
C. F.
Quate
, and
O.
Solgaard
,
Nat. Nanotechnol.
2
,
507
(
2007
).
21.
T.
Cohen-Karni
,
L.
Segev
,
O.
Srur-Lavi
,
S. R.
Cohen
, and
E.
Joselevich
,
Nat. Nanotechnol.
1
,
36
(
2006
).
22.
Silicon Carbide
, edited by
P.
Friedrichs
,
T.
Kimoto
,
L.
Ley
, and
G.
Pensl
(
Wiley-VCH
,
Weinheim
,
2010
).
23.
Properties of Silicon Carbide
, edited by
G. L.
Harris
(
INSPEC
,
London
,
1995
).
24.
P. G.
Neudeck
,
R. S.
Okojie
, and
L.-Y.
Chen
,
Proc. IEEE
90
,
1065
(
2002
).
25.
M.
Mehregany
,
C. A.
Zorman
,
N.
Rajan
, and
C. H.
Wu
,
Proc. IEEE
86
,
1594
(
1998
).
26.
S.
Habermehl
,
M.
Rodriguez
, and
B.
Simmons
,
J. Appl. Phys.
112
,
013535
(
2012
).
27.
X. M. H.
Huang
,
X. L.
Feng
,
M. K.
Prakash
,
S.
Kumar
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
,
Mater. Sci. Forum
457–460
,
1531
(
2004
).
28.
T. K.
Hossain
,
S.
MacLaren
,
J. M.
Engel
,
C.
Liu
,
I.
Adesida
, and
R. S.
Okojie
,
J. Micromech. Microeng.
16
,
751
(
2006
).
29.
P.
Cong
and
D. J.
Young
,
J. Micromech. Microeng.
15
,
2243
(
2005
).
30.
J.
Lee
,
Z.
Wang
,
K.
He
,
J.
Shan
, and
P. X.-L.
Feng
,
ACS Nano
7
,
6086
(
2013
).
31.
W. C.
Young
and
R. G.
Budynas
,
Roark's Formulas for Stress and Strain
(
McGraw-Hill
,
New York
,
2002
), pp.
381
426
.
32.
J. M.
Gere
and
B. J.
Goodno
,
Mechanics of Materials
(
Cengage Learning
,
Stamford
,
2013
), pp.
1063
1068
.
33.
M. C.
Cross
and
R.
Lifshitz
,
Phys. Rev. B
64
,
085324
(
2001
).
34.
X. L.
Feng
,
M. H.
Matheny
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
,
Nano Lett.
10
,
2891
(
2010
).
35.
R.
Yang
,
K.
Ladhane
,
Z.
Wang
,
J.
Lee
,
D. J.
Young
, and
P. X.-L.
Feng
, in
Proc. IEEE 27th Int. Conf. of Micro Electro Mechanical Systems (MEMS)
, San Francisco, CA, 26–30 January
2014
, pp.
793
796
.
You do not currently have access to this content.