We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm−1. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 107 and 46 cm2 V−1 s−1, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm−1 and the on/off ratio is 4 × 105. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

1.
T.
Durkop
,
S. A.
Getty
,
E.
Cobas
, and
M. S.
Fuhrer
,
Nano Lett.
4
(
1
),
35
(
2004
).
2.
M. S.
Arnold
,
A. A.
Green
,
J. F.
Hulvat
,
S. I.
Stupp
, and
M. C.
Hersam
,
Nat. Nanotechnol.
1
(
1
),
60
(
2006
).
3.
R. B.
Weisman
and
S. M.
Bachilo
,
Nano Lett.
3
(
9
),
1235
(
2003
).
4.
C. Q.
Sun
,
H. L.
Bai
,
B. K.
Tay
,
S.
Li
, and
E. Y.
Jiang
,
J. Phys. Chem. B
107
(
31
),
7544
(
2003
).
5.
Z.
Jie
,
A.
Lin
,
N.
Patil
,
W.
Hai
,
W.
Lan
,
H. S. P.
Wong
, and
S.
Mitra
,
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
31
(
4
),
453
(
2012
).
6.
J.
Guo
,
S.
Hasan
,
A.
Javey
,
G.
Bosman
, and
M.
Lundstrom
,
IEEE Trans. Nanotechnol.
4
(
6
),
715
(
2005
).
7.
D. L.
Pulfrey
and
L.
Chen
,
Solid-State Electron.
52
(
9
),
1324
(
2008
).
8.
A. D.
Franklin
,
M.
Luisier
,
S. J.
Han
,
G.
Tulevski
,
C. M.
Breslin
,
L.
Gignac
,
M. S.
Lundstrom
, and
W.
Haensch
,
Nano Lett.
12
(
2
),
758
(
2012
).
9.
P. J.
Burke
,
Solid-State Electron.
48
(
10–11
),
1981
(
2004
).
10.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
R.
Saito
,
Carbon
33
(
7
),
883
(
1995
).
11.
D. M.
Sun
,
M. Y.
Timmermans
,
Y.
Tian
,
A. G.
Nasibulin
,
E. I.
Kauppinen
,
S.
Kishimoto
,
T.
Mizutani
, and
Y.
Ohno
,
Nat. Nanotechnol.
6
(
3
),
156
(
2011
).
12.
13.
A.
Behnam
,
V. K.
Sangwan
,
X.
Zhong
,
F.
Lian
,
D.
Estrada
,
D.
Jariwala
,
A. J.
Hoag
,
L. J.
Lauhon
,
T. J.
Marks
,
M. C.
Hersam
, and
E.
Pop
,
ACS Nano
7
(
1
),
482
(
2013
).
14.
V. K.
Sangwan
,
R. P.
Ortiz
,
J. M. P.
Alaboson
,
J. D.
Emery
,
M. J.
Bedzyk
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
ACS Nano
6
(
8
),
7480
(
2012
).
15.
S. Z.
Bisri
,
J.
Gao
,
V.
Derenskyi
,
W.
Gomulya
,
I.
Iezhokin
,
P.
Gordiichuk
,
A.
Herrmann
, and
M. A.
Loi
,
Adv. Mater.
24
(
46
),
6147
(
2012
).
16.
S.
Ghosh
,
S. M.
Bachilo
, and
R. B.
Weisman
,
Nat. Nanotechnol.
5
(
6
),
443
(
2010
).
17.
M.
Zheng
,
A.
Jagota
,
E. D.
Semke
,
B. A.
Diner
,
R. S.
Mclean
,
S. R.
Lustig
,
R. E.
Richardson
, and
N. G.
Tassi
,
Nat. Mater.
2
(
5
),
338
(
2003
).
18.
H.
Liu
,
D.
Nishide
,
T.
Tanaka
, and
H.
Kataura
,
Nat. Commun.
2
,
309
(
2011
).
19.
H.
Wang
,
J.
Mei
,
P.
Liu
,
K.
Schmidt
,
G.
Jimenez-Oses
,
S.
Osuna
,
L.
Fang
,
C.
Tassone
,
A. P.
Zoombelt
,
A. N.
Sokolov
,
K. N.
Houk
,
M. F.
Toney
, and
Z.
Bao
,
ACS Nano
7
(
3
),
2659
(
2013
).
20.
C.
Wang
,
L.
Qian
,
W.
Xu
,
S.
Nie
,
W.
Gu
,
J.
Zhang
,
J.
Zhao
,
J.
Lin
,
Z.
Chen
, and
Z.
Cui
,
Nanoscale
5
(
10
),
4156
(
2013
).
21.
F.
Jakubka
,
C.
Backes
,
F.
Gannott
,
U.
Mundloch
,
F.
Hauke
,
A.
Hirsch
, and
J.
Zaumseil
,
ACS Nano
7
(
8
),
7428
(
2013
).
22.
W.
Xu
,
J.
Zhao
,
L.
Qian
,
X.
Han
,
L.
Wu
,
W.
Wu
,
M.
Song
,
L.
Zhou
,
W.
Su
,
C.
Wang
,
S.
Nie
, and
Z.
Cui
,
Nanoscale
6
(
3
),
1589
(
2014
).
23.
C. Y.
Khripin
,
J. A.
Fagan
, and
M.
Zheng
,
J. Am. Chem. Soc.
135
(
18
),
6822
(
2013
).
24.
Q.
Cao
,
S. J.
Han
,
G. S.
Tulevski
,
Y.
Zhu
,
D. D.
Lu
, and
W.
Haensch
,
Nat. Nanotechnol.
8
(
3
),
180
(
2013
).
25.
M.
Engel
,
J. P.
Small
,
M.
Steiner
,
M.
Freitag
,
A. A.
Green
,
M. S.
Hersam
, and
P.
Avouris
,
ACS Nano
2
(
12
),
2445
(
2008
).
26.
X.
Li
,
L.
Zhang
,
X.
Wang
,
I.
Shimoyama
,
X.
Sun
,
W.-S.
Seo
, and
H.
Dai
,
J. Am. Chem. Soc.
129
(
16
),
4890
(
2007
).
27.
Y.
Joo
,
G. J.
Brady
,
M. S.
Arnold
, and
P.
Gopalan
, (unpublished).
28.
K. S.
Mistry
,
B. A.
Larsen
, and
J. L.
Blackburn
,
ACS Nano
7
(
3
),
2231
(
2013
).
29.
D. J.
Bindl
,
M. Y.
Wu
,
F. C.
Prehn
, and
M. S.
Arnold
,
Nano Lett.
11
(
2
),
455
(
2011
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4866577 for details on the preparation of sorted and unsorted SWCNT solutions.
31.
H.
Dai
,
A.
Jarvey
,
E.
Pop
,
D.
Mann
, and
Y.
Lu
,
Nano: Brief Rep. Rev.
1
(
1
),
1
(
2006
).
32.
Z.
Chen
,
J.
Appenzeller
,
J.
Knoch
,
Y.-M.
Lin
, and
P.
Avouris
,
Nano Lett.
5
(
7
),
1497
(
2005
).
33.
W.
Kim
,
A.
Jarvey
,
O.
Vermesh
,
Q.
Wang
,
Y.
Li
, and
H.
Dai
,
Nano Lett.
3
(
2
),
193
(
2003
).
34.
J.
Wu
,
L.
Jiao
,
A.
Antaris
,
C. L.
Choi
,
L.
Xie
,
Y.
Wu
,
S.
Diao
,
C.
Chen
,
Y.
Chen
, and
H.
Dai
,
Small
9
(
24
),
4142
(
2013
).
35.
S. H.
Jin
,
S. N.
Dunham
,
J.
Song
,
X.
Xie
,
J. H.
Kim
,
C.
Lu
,
A.
Islam
,
F.
Du
,
J.
Kim
,
J.
Felts
,
Y.
Li
,
F.
Xiong
,
M. A.
Wahab
,
M.
Menon
,
E.
Cho
,
K. L.
Grosse
,
D. J.
Lee
,
H. U.
Chung
,
E.
Pop
,
M. A.
Alam
,
W. P.
King
,
Y.
Huang
, and
J. A.
Rogers
,
Nat. Nanotechnol.
8
(
5
),
347
(
2013
).
36.
Y.
Miyata
,
K.
Shiozawa
,
Y.
Asada
,
Y.
Ohno
,
R.
Kitaura
,
T.
Mizutani
, and
H.
Shinohara
,
Nano Res.
4
(
10
),
963
(
2011
).
37.
S. J.
Kang
,
C.
Kocabas
,
T.
Ozel
,
M.
Shim
,
N.
Pimparkar
,
M. A.
Alam
,
S. V.
Rotkin
, and
J. A.
Rogers
,
Nat. Nanotechnol.
2
(
4
),
230
(
2007
).
38.
B.
Kim
,
S.
Jang
,
P. L.
Prabhumirashi
,
M. L.
Geier
,
M. C.
Hersam
, and
A.
Dodabalapur
,
Appl. Phys. Lett.
103
(
8
),
082119
(
2013
).
39.
A.
Jarvey
,
J.
Guo
,
Q.
Wang
,
M.
Lundstrom
, and
H.
Dai
,
Lett. Nat.
424
,
654
(
2003
).

Supplementary Material

You do not currently have access to this content.