We utilize the excellent mechanical properties of epitaxial silicon carbide (SiC) on silicon plus the capability of tuning its residual stress within a large tensile range to fabricate microstrings with fundamental resonant frequencies (f0) of several hundred kHz and mechanical quality factors (Q) of over a million. The fabrication of the perfect-clamped string structures proceeds through simple silicon surface micromachining processes. The resulting f× Q product in vacuum is equal or higher as compared to state-of-the-art amorphous silicon nitride microresonators. We demonstrate that as the residual epitaxial SiC stress is doubled, the f× Q product for the fundamental mode of the strings shows a four-fold increase.

1.
G.
Stemme
,
J. Micromech. Microeng.
1
(
2
),
113
(
1991
).
2.
K.
Brueckner
,
F.
Niebelschuetz
,
K.
Tonisch
,
C.
Foerster
,
V.
Cimalla
,
R.
Stephan
,
J.
Pezoldt
,
T.
Stauden
,
O.
Ambacher
, and
M. A.
Hein
,
Phys. Status Solidi A
208
(
2
),
357
(
2011
).
3.
A.
Boisen
,
S.
Dohn
,
S. S.
Keller
,
S.
Schmid
, and
M.
Tenje
,
Rep. Prog. Phys.
74
(
3
),
036101
(
2011
).
4.
K. Y.
Yasumura
,
T. D.
Stowe
,
E. M.
Chow
,
T.
Pfafman
,
T. W.
Kenny
,
B. C.
Stipe
, and
D.
Rugar
,
J. Microelectromech. Syst.
9
(
1
),
117
(
2000
).
5.
S. S.
Verbridge
,
J. M.
Parpia
,
R. B.
Reichenbach
,
L. M.
Bellan
, and
H. G.
Craighead
,
J. Appl. Phys.
99
(
12
),
124304
(
2006
).
6.
S. S.
Verbridge
,
D. F.
Shapiro
,
H. G.
Craighead
, and
J. M.
Parpia
,
Nano Lett.
7
(
6
),
1728
(
2007
).
7.
S. S.
Verbridge
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
92
(
1
),
013112
(
2008
).
8.
S.
Schmid
,
K. D.
Jensen
,
K. H.
Nielsen
, and
A.
Boisen
,
Phys. Rev. B
84
(
16
),
165307
(
2011
).
9.
S.
Schmid
,
B.
Malm
, and
A.
Boisen
, in
Proceedings of 24th International Conference on Micro Electro Mechanical Systems MEMS-2011, Cancun, Mexico
(
IEEE
,
2011
), pp.
481
484
.
10.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
(
6
),
061101
(
2005
).
11.
12.
D. W.
Carr
,
S.
Evoy
,
L.
Sekaric
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
75
(
7
),
920
(
1999
).
13.
C. A.
Zorman
and
R. J.
Parro
, “
Micro and nanomechanical structures for silicon carbide MEMS and NEMS
,”
Phys. Status Solidi B
245
,
1404
1424
(
2008
).
14.
F.
Iacopi
,
R. E.
Brock
,
A.
Iacopi
,
L.
Hold
, and
R. H.
Dauskardt
,
Acta Mater.
61
(
17
),
6533
(
2013
).
15.
X. M. H.
Huang
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
,
Nature
421
(
6922
),
496
(
2003
).
16.
M. B. J.
Wijesundara
and
R. G.
Azevedo
, in
Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf
, edited by
S. D.
Senturia
,
R. T.
Howe
, and
A. J.
Ricco
(
Springer
,
New York, USA
,
2011
).
17.
L.
Wang
,
S.
Dimitrijev
,
J.
Han
,
A.
Iacopi
,
L.
Hold
,
P.
Tanner
, and
H. B.
Harrison
,
Thin Solid Films
519
(
19
),
6443
(
2011
).
18.
F.
Iacopi
,
G.
Walker
,
L.
Wang
,
L.
Malesys
,
S.
Ma
,
B. V.
Cunning
, and
A.
Iacopi
,
Appl. Phys. Lett.
102
(
1
),
011908
(
2013
).
19.
A.
Tarraf
,
J.
Daleiden
,
S.
Irmer
,
D.
Prasai
, and
H.
Hillmer
,
J. Micromech. Microeng.
14
(
3
),
317
(
2004
).
20.
M.
Martyniuk
,
C. A.
Musca
,
J. M.
Dell
,
R. G.
Elliman
, and
L.
Faraone
,
Int. J. Surf. Sci. Eng.
3
(
1/2
),
3
(
2009
).
21.
E.
Carrera
,
G.
Giunta
, and
M.
Petrolo
,
Beam Structures: Classical and Advanced Theories
(
John Wiley and Sons
,
United Kingdom
,
2011
), Chap. 2.
22.
K. P.
Zetie
,
S. F.
Adams
, and
R. M.
Tocknell
,
Phys. Educ.
35
(
1
),
46
(
2000
).
23.
R.
Lifshitz
and
M. L.
Roukes
,
Phys. Rev. B
61
(
8
),
5600
(
2000
).
24.
L.
Wang
,
S.
Dimitrijev
,
J.
Han
,
P.
Tanner
,
A.
Iacopi
, and
L.
Hold
,
J. Cryst. Growth
329
,
67
(
2011
).
25.
X. L.
Feng
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
, e-print arXiv: cond-mat/0606711 (
2006
).
26.
L.
Sekaric
,
D. W.
Carr
,
S.
Evoy
,
J. M.
Parpia
, and
H. G.
Craighead
,
Sens. Actuators, A
101
(
1
),
215
(
2002
).
27.
P. S.
Waggoner
,
C. P.
Tan
, and
H. G.
Craighead
,
J. Appl. Phys.
107
(
11
),
114505
(
2010
).
28.
B.
Gupta
,
M.
Notarianni
,
N.
Mishra
,
M.
Shafiei
,
F.
Iacopi
, and
N.
Motta
,
Carbon
68
,
563
(
2014
).
29.
S.
Lee
,
V. P.
Adiga
,
R. A.
Barton
,
A. V. D.
Zande
,
G. H.
Lee
,
B. R.
Ilic
,
A.
Gondarenko
,
J. M.
Parpia
,
H. G.
Craighead
, and
J.
Hone
,
Nanoletters
13
(
9
),
4275
(
2013
).
30.
R. G.
Azevedo
,
D. G.
Jones
,
A. V.
Jog
,
B.
Jamshidi
,
D. R.
Myers
,
L.
Chen
,
X.-A.
Fu
,
M.
Mehregany
,
M. B. J.
Wijesundara
, and
A. P.
Pisano
,
IEEE Sens. J.
7
(
3–4
),
568
(
2007
).
31.
M.
Placidi
,
P.
Godignon
,
N.
Mestres
,
G.
Abadal
,
G.
Ferro
,
A.
Leycuras
, and
T.
Chassagne
,
Sens. Actuators, B
133
(
1
),
276
(
2008
).
32.
A.
Oliveros
,
A.
Guiseppi-Elie
, and
S. E.
Saddow
,
Biomed. Microdevices
15
(
2
),
353
(
2013
).
33.
R.
Yakimova
,
R. M.
Petoral
, Jr.
,
G. R.
Yazdi
,
C.
Vahlberg
,
A. L.
Spetz
, and
K.
Uvdal
,
J. Phys. D: Appl. Phys.
40
,
6435
(
2007
).
34.
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications
, edited by
S. E.
Saddow
(
Elsevier Science
,
Amsterdam
,
2011
).
You do not currently have access to this content.