We demonstrate the impact on thermal conductivity of varying the concentration of oxygen vacancies and reduced cations in Pr0.1Ce0.9O2−δ thin films prepared by pulsed laser deposition. The oxygen vacancy concentration is controlled by varying the oxygen partial pressure between 1 × 10−4 and 1 atm at 650  °C. Corresponding changes in the oxygen non-stoichiometry (δ) are monitored by detecting the lattice parameters of the films with high-resolution X-ray diffraction, while the thermal properties are characterized by time-domain thermoreflectance measurements. The films are shown to exhibit a variation in oxygen vacancy content, and in the Pr3+/Pr4+ ratio, corresponding to changes in δ from 0.0027 to 0.0364, leading to a reduction in the thermal conductivity from k = 6.62 ± 0.61 to 3.82 ± 0.51 W/m-K, respectively. These values agree well with those predicted by the Callaway and von Baeyer model for thermal conductivity in the presence of point imperfections. These results demonstrate the capability of controlling thermal conductivity via control of anion and cation defect concentrations in a given reducible oxide.

1.
I.
Terasaki
,
Y.
Sasago
, and
K.
Uchinokura
,
Phys. Rev. B
56
,
R12685
(
1997
).
2.
N. P.
Padture
,
M.
Gell
, and
E. H.
Jordan
,
Science
296
,
280
(
2002
).
3.
D.
Clarke
and
S.
Phillpot
,
Mater. Today
8
,
22
(
2005
).
4.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
,
Nat. Nanotechnol.
8
,
13
(
2013
).
5.
A.
Faghri
and
Z.
Guo
,
Int. J. Heat Mass Transf.
48
,
3891
(
2005
).
6.
M.
Khandelwal
and
M. M.
Mench
,
J. Power Sources
161
,
1106
(
2006
).
7.
8.
J.
Callaway
and
H.
von Baeyer
,
Phys. Rev.
120
,
1149
(
1960
).
9.
C.
Walker
and
R.
Pohl
,
Phys. Rev.
131
,
1433
(
1963
).
10.
P. G.
Klemens
,
Phys. Condens. Matter
263–264
,
102
(
1999
).
11.
P. G.
Klemens
and
M.
Gell
,
Mater. Sci. Eng. A
245
,
143
(
1998
).
12.
R.
van de Krol
and
H.
Tuller
,
Solid State Ionics
150
,
167
(
2002
).
13.
D. C.
Hill
and
H. L.
Tuller
, in
Ceramic Materials and Electronics
, edited by
R. C.
Buchanan
and
M.
Dekker
, 2nd ed. (New York,
1991
), pp.
249
347
.
14.
J.
He
,
Y.
Liu
, and
R.
Funahashi
,
J. Mater. Res.
26
,
1762
(
2011
).
15.
A.
Janotti
and
C. G.
Van de Walle
,
Rep. Prog. Phys.
72
,
126501
(
2009
).
16.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
17.
P. G.
Klemens
,
Int. J. Thermophys.
22
,
265
(
2001
).
18.
D.
Chen
,
S. R.
Bishop
, and
H. L.
Tuller
,
Adv. Funct. Mater.
23
,
2168
(
2013
).
19.
D.
Chen
,
S. R.
Bishop
, and
H. L.
Tuller
,
J. Electroceram.
28
,
62
(
2012
).
20.
G.
Abadias
,
Surf. Coat. Technol.
202
,
2223
(
2008
).
21.
U.
Welzel
,
J.
Ligot
,
P.
Lamparter
,
A. C.
Vermeulen
, and
E. J.
Mittemeijer
,
J. Appl. Crystallogr.
38
,
1
(
2005
).
22.
V.
Kanchana
,
G.
Vaitheeswaran
,
A.
Svane
, and
A.
Delin
,
J. Phys. Condens. Matter
18
,
9615
(
2006
).
23.
Y.
Kuru
,
D.
Marrocchelli
,
S. R.
Bishop
,
D.
Chen
,
B.
Yildiz
, and
H. L.
Tuller
,
J. Electrochem. Soc.
159
,
F799
(
2012
).
24.
Y.
Kuru
,
S. R.
Bishop
,
J. J.
Kim
,
B.
Yildiz
, and
H. L.
Tuller
,
Solid State Ionics
193
,
1
(
2011
).
25.
Y.
Wang
,
T.
Mori
,
J.-G.
Li
, and
T.
Ikegami
,
J. Am. Ceram. Soc.
85
,
3105
(
2004
).
26.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
27.
D. G.
Cahill
,
K.
Goodson
, and
A.
Majumdar
,
J. Heat Transfer
124
,
223
(
2002
).
28.
W. S.
Capinski
and
H. J.
Maris
,
Rev. Sci. Instrum.
67
,
2720
(
1996
).
29.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
30.
S. J.
Litzelman
and
H. L.
Tuller
,
Solid State Ionics
180
,
1190
(
2009
).
31.
R. D.
Shannon
,
Acta Crystallogr. A
32
,
751
(
1976
).
32.
T.
Hisashige
,
Y.
Yamamura
, and
T.
Tsuji
,
J. Alloys Compd.
408–412
,
1153
(
2006
).
33.
D.
Marrocchelli
,
S. R.
Bishop
,
H. L.
Tuller
,
G. W.
Watson
, and
B.
Yildiz
,
Phys. Chem. Chem. Phys.
14
,
12070
(
2012
).
34.
D.
Marrocchelli
,
S. R.
Bishop
,
H. L.
Tuller
, and
B.
Yildiz
,
Adv. Funct. Mater.
22
,
1958
(
2012
).
You do not currently have access to this content.