Rectification in nanopores is usually achieved by a fixed asymmetry in the pore geometry and charge distribution. We show here that nanoparticle blocking of a cylindrical pore induces rectifying properties that can support significant net currents with zero time-average potentials. To describe experimentally this effect, the steady-state current-voltage curves of a single nanopore are obtained for different charge states and relative sizes of the pore and the charged nanoparticles, which are present only on one side. The rectification phenomena observed can find applications in the area of nanofluidics and involves physical concepts that are also characteristic of the blocking of protein ion channels by ionic drugs.

1.
R. D.
Astumian
and
P.
Hänggi
,
Phys. Today
55
(
11
),
33
(
2002
).
2.
M. O.
Magnasco
,
Phys. Rev. Lett.
71
,
1477
(
1993
).
3.
P.
Hänggi
and
F.
Marchesoni
,
Rev. Mod. Phys.
81
,
387
(
2009
).
4.
P.
Ramirez
,
V.
Gomez
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
,
Electrochem. Commun.
31
,
137
(
2013
).
5.
M.
Queralt-Martín
,
E.
García-Giménez
,
V. M.
Aguilella
,
P.
Ramirez
,
S.
Mafe
, and
A.
Alcaraz
,
Appl. Phys. Lett.
103
,
043707
(
2013
).
6.
Z.
Siwy
and
A.
Fuliński
,
Phys. Rev. Lett.
89
,
198103
(
2002
).
7.
I.
Vlassiouk
and
Z.
Siwy
,
Nano Lett.
7
,
552
(
2007
).
8.
Z. S.
Siwy
,
Adv. Funct. Mater.
16
,
735
(
2006
).
9.
W.
Guan
,
R.
Fan
, and
M. A.
Reed
,
Nat. Commun.
2
,
506
(
2011
).
10.
M.
Ali
,
P.
Ramirez
,
S.
Mafe
,
R.
Neumann
, and
W.
Ensinger
,
ACS Nano
3
,
603
(
2009
).
11.
W.
Guo
,
L.
Cao
,
J.
Xia
,
F.-Q.
Nie
,
W.
Ma
,
J.
Xue
,
Y.
Song
,
D.
Zhu
,
Y.
Wang
, and
L.
Jiang
,
Adv. Funct. Mater.
20
,
1339
(
2010
).
12.
P.
Ramirez
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
,
Appl. Phys. Lett.
101
,
133108
(
2012
).
13.
E. C.
Yusko
,
R.
An
, and
M.
Mayer
,
ACS Nano
4
,
477
(
2010
).
14.
S.
Lee
,
Y.
Zhang
,
H. S.
White
,
C. C.
Harrell
, and
C. R.
Martin
,
Anal. Chem.
76
,
6108
(
2004
).
15.
R. J.
White
and
H. S.
White
,
Anal. Chem.
79
,
6334
(
2007
).
16.
E. M.
Nestorovich
,
C.
Danelon
,
M.
Winterhalter
, and
S. M.
Bezrukov
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
9789
(
2002
).
17.
S.
Mafe
,
P.
Ramírez
, and
A.
Alcaraz
,
J. Chem. Phys.
119
,
8097
(
2003
).
18.
V. A.
Karginov
,
E. M.
Nestorovich
,
M.
Moayeri
,
S. H.
Leppla
, and
S. M.
Bezrukov
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
15075
(
2005
).
19.
M.
Aguilella-Arzo
,
J.
Cervera
,
P.
Ramirez
, and
S.
Mafe
,
Phys. Rev. E
73
,
041914
(
2006
).
20.
C.
Verdiá-Báguena
,
M.
Queralt-Martín
,
V. M.
Aguilella
, and
A.
Alcaraz
,
J. Phys. Chem. C
116
,
6537
(
2012
).
21.
R. D.
Astumian
,
J. C.
Weaver
, and
R. K.
Adair
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
3740
(
1995
).
22.
J. A.
Manzanares
,
J.
Cervera
, and
S.
Mafe
,
Appl. Phys. Lett.
99
,
153703
(
2011
).
23.
D. J.
Blackiston
,
K. A.
McLaughlin
, and
M.
Levin
,
Cell Cycle
8
,
3527
(
2009
).
24.
M.
Levin
and
C. G.
Stevenson
,
Annu. Rev. Biomed. Eng.
14
,
295
(
2012
).
25.
M.
Davenport
,
K.
Healy
,
M.
Pevarnik
,
N.
Teslich
,
S.
Cabrini
,
A. P.
Morrison
,
Z. S.
Siwy
, and
S. E.
Létant
,
ACS Nano
6
,
8366
(
2012
).
26.
P. Y.
Apel
,
I. V.
Blonskaya
,
O. L.
Orelovitch
,
B. A.
Sartowska
, and
R.
Spohr
,
Nanotechnology
23
,
225503
(
2012
).
27.
M.
Wanunu
,
W.
Morrison
,
Y.
Rabin
,
A. Y.
Grosberg
, and
A.
Meller
,
Nat. Nanotechnol.
5
,
160
(
2010
).
28.
M. X.
Macrae
,
S.
Blake
,
M.
Mayer
, and
J.
Yang
,
J. Am. Chem. Soc.
132
,
1766
(
2010
).
29.
M.
Tagliazucchi
,
Y.
Rabin
, and
I.
Szleifer
,
ACS Nano
7
,
9085
(
2013
).
30.
M.
Tsutsui
,
Y.
Maeda
,
Y.
He
,
S.
Hongo
,
S.
Ryuzaki
,
S.
Kawano
,
T.
Kawai
, and
M.
Taniguchi
,
Appl. Phys. Lett.
103
,
013108
(
2013
).
31.
Z.
Siwy
and
A.
Fuliński
,
Am. J. Phys.
72
,
567
(
2004
).
32.
E.
Kalman
,
K.
Healy
, and
Z. S.
Siwy
,
Europhys. Lett.
78
,
28002
(
2007
).
33.
M.
Ali
,
S.
Nasir
,
P.
Ramirez
,
J.
Cervera
,
S.
Mafe
, and
W.
Ensinger
,
J. Phys. Chem. C
117
,
18234
(
2013
).
You do not currently have access to this content.