In this Letter, the effect of domain pattern on 180° domain switching behavior in BaTiO3 crystals was investigated by using polarized light microscopy during antiparallel electric field loading. Results show that for nearly perfectly in-plane poled specimen, 180° domain switching is accomplished by successive antiparallel domain nucleation and forward domain wall motion; whereas for specimen with in-plane a-a domain pattern, 180° domain switching is achieved by two-step 90° ferroelastic domain switching. This discrepancy is explained by combined effects of the depolarization field and the mechanical constraint from the adjacent domains during 90° ferroelastic domain switching.

1.
K.
Uchino
,
Ferroelectric Devices
(
Marcel Dekker
,
New York
,
2000
).
2.
J. F.
Scott
,
Ferroelectric Memories
(
Springer
,
Berlin
,
2000
).
3.
C. T.
Nelson
,
P.
Gao
,
J. R.
Jokisaari
,
C.
Heikes
,
C.
Adamo
,
A.
Melville
,
S. H.
Baek
,
C. M.
Folkman
,
B.
Winchester
,
Y. J.
Gu
,
Y. M.
Liu
,
K.
Zhang
,
E.
Wang
,
J. Y.
Li
,
L. Q.
Chen
,
C. B.
Eom
,
D. G.
Scholom
, and
X. Q.
Pan
,
Science
334
,
968
971
(
2011
).
4.
S. H.
Baek
,
H. W.
Jang
,
C. M.
Folkman
,
Y. L.
Li
,
B.
Winchester
,
J. X.
Zhang
,
Q.
He
,
Y. H.
Chu
,
C. T.
Nelson
,
M. S.
Rzchowski
,
X. Q.
Pan
,
R.
Ramesh
,
L. Q.
Chen
, and
C. B.
Eom
,
Nature Mater.
9
,
309
314
(
2010
).
5.
M. P.
Cruz
,
Y. H.
Chu
,
J. X.
Zhang
,
P. L.
Yang
,
F.
Zavaliche
,
Q.
He
,
P.
Shafer
,
L. Q.
Chen
, and
R.
Ramesh
,
Phys. Rev. Lett.
99
,
217601
(
2007
).
6.
W. J.
Merz
,
Phys. Rev.
95
(
3
),
690
698
(
1954
).
7.
T.
Rojac
,
M.
Kosec
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
94
(
12
),
4108
4111
(
2011
).
8.
B.
Jiang
,
Y.
Bai
,
W. Y.
Chu
,
Y. J.
Su
, and
L. J.
Qiao
,
Appl. Phys. Lett.
93
(
15
),
152905
(
2008
).
9.
P.
Potnis
and
J.
Huber
,
J. Eur. Ceram. Soc.
33
(
2
),
327
333
(
2013
).
10.
E. A.
Little
,
Phys. Rev.
98
(
4
),
978
984
(
1955
).
11.
J. E.
Daniels
,
T. R.
Finlayson
,
M.
Davis
,
D.
Damjanovic
,
A. J.
Studer
,
M.
Hoffman
, and
J. L.
Jones
,
J. Appl. Phys.
101
,
104108
(
2007
).
12.
B.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
1971
).
13.
J.
Seidel
,
L. W.
Martin
,
Q.
He
,
Q.
Zhan
,
Y. H.
Chu
,
A.
Rother
,
M. E.
Hawkridge
,
P.
Maksymovych
,
P.
Yu
,
M.
Gajek
,
N.
Balke
,
S. V.
Kalinin
,
S.
Gemming
,
F.
Wang
,
G.
Catalan
,
J. F.
Scott
,
N. A.
Spaldin
,
J.
Orenstein
, and
R.
Ramesh
,
Nature Mater.
8
(
3
),
229
234
(
2009
).
14.
J. H.
Yen
,
Y. C.
Shu
,
J.
Shieh
, and
J. H.
Yeh
,
J. Mech. Phys. Solids
56
(
6
),
2117
2135
(
2008
).
15.
M.
Zgonik
,
P.
Bernasconi
,
M.
Duelli
,
R.
Schlesser
,
P.
Gunter
,
M. H.
Garrett
,
D.
Rytz
,
Y.
Zhu
, and
X.
Wu
,
Phys. Rev. B
50
(
9
),
5941
5949
(
1994
).
16.
S. C.
Hwang
,
C. S.
Lynch
, and
R. M.
McMeeking
,
Acta Metall. Mater.
43
(
5
),
2073
2084
(
1995
).
17.
C. T.
Sun
and
A.
Achuthan
,
Proc. SPIE
4333
,
240
(
2001
).
18.
C. T.
Sun
and
L. Z.
Jiang
, in Proceedings of the 4th European and 2nd MIMR Conference on Smart Materials and Structures (
1998
), pp.
715
722
.
19.
F. X.
Li
,
D. N.
Fang
, and
A. K.
Soh
,
Smart Mater. Struct.
13
(
4
),
668
675
(
2004
).
20.
D. N.
Fang
,
Z. K.
Zhang
, and
A. K.
Soh
,
Mech. Mater.
38
(
1–2
),
25
32
(
2006
).
21.
Y.
Fotinich
and
G. P.
Carman
,
Proc. SPIE
3992
,
319
330
(
2000
).
You do not currently have access to this content.