3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

1.
P. C.
Lauterbur
,
Nature
242
,
190
(
1973
).
2.
M. K.
Stehling
,
R.
Turner
, and
P.
Mansfield
,
Science
254
,
43
(
1991
).
4.
I. I.
Rabi
,
J. R.
Zacharias
,
S.
Millman
, and
P.
Kusch
,
Phys. Rev.
53
,
318
(
1938
).
5.
G. G.
Scott
,
Rev. Sci. Instrum.
28
,
270
(
1957
).
6.
L. A.
Marzetta
,
Rev. Sci. Instrum.
32
,
1192
(
1961
).
7.
C.
Michael
,
I.
Fishbein
,
B. B.
Yellen
,
I. S.
Alferiev
,
M.
Bakay
,
S.
Ganta
,
R.
Adamo
,
M.
Amiji
,
G.
Friedman
, and
R. J.
Levy
,
Proc. Natl. Acad. Sci. USA
107
,
8346
(
2010
).
8.
P.
Boris
,
I.
Fishbein
,
M.
Chorny
,
I.
Alferiev
,
D.
Williams
,
B. B.
Yellen
,
G.
Friedman
, and
R. J.
Levy
,
Proc. Natl. Acad. Sci. USA
105
,
698
(
2008
).
9.
R.
Hergt
,
R.
Hiergeist
,
I.
Hilger
,
W. A.
Kaiser
,
Y.
Lapatnikov
,
S.
Margel
, and
U.
Richter
,
J. Magn. Magn. Mater.
270
,
345
(
2004
).
10.
S.
Mornet
,
S.
Vasseur
,
F.
Grasset
, and
E.
Duguet
,
J. Mater. Chem.
14
,
2161
(
2004
).
11.
B.
Lim
,
V.
Reddy
,
X. H.
Hu
,
K. W.
Kim
,
M.
Jadhav
,
R.
Abedini-Nassab
,
Y.-W.
Noh
,
Y. T.
Lim
,
B. B.
Yellen
, and
C. G.
Kim
,
Nat. Commun.
5
,
3846
(
2014
).
12.
M. D.
Krebs
,
R. M.
Erb
,
B. B.
Yellen
,
B.
Samanta
,
A.
Bajaj
,
V. M.
Rotello
, and
E.
Alsberg
,
Nano Lett.
9
,
1812
(
2009
).
13.
G. R.
Souza
,
J. R.
Molina
,
R. M.
Raphael
,
M. G.
Ozawa
,
D. J.
Stark
,
C. S.
Levin
,
L. F.
Bronk
,
J. S.
Ananta
,
J.
Mandelin
,
M.-M.
Georgescu
,
J. A.
Bankson
,
J. G.
Gelovani
,
T. C.
Killian
,
W.
Arap
, and
R.
Pasqualini
,
Nat. Nanotechnol.
5
,
291
(
2010
).
14.
Y.
Yang
,
R. M.
Erb
,
B. J.
Wiley
,
S.
Zauscher
, and
B. B.
Yellen
,
Nano Lett.
11
,
1681
(
2011
).
15.
F.
Mosconi
,
J. F.
Allemand
,
D.
Bensimon
, and
V.
Croquette
,
Phys. Rev. Lett.
102
,
078301
(
2009
).
16.
C.
Gosse
and
V.
Croquette
,
J. Biophys.
82
,
3314
(
2002
).
17.
C.
Haber
and
D.
Witz
,
Rev. Sci. Instrum.
71
,
4561
(
2000
).
18.
G. J.
Hayes
,
J. H.
So
,
A.
Qusba
,
M. D.
Dickey
, and
G.
Lazzi
,
IEEE. Trans. Antennas Propag.
60
,
2151
(
2012
).
19.
J. H.
So
,
J.
Thelen
,
A.
Qusba
,
G. J.
Hayes
,
G.
Lazzi
, and
M. D.
Dickey
,
Adv. Funct. Mater.
19
,
3632
(
2009
).
20.
Y. L.
Park
,
C.
Majidi
,
R.
Kramer
,
P.
Berard
, and
R. J.
Wood
,
J. Micromech. Microeng.
20
,
125029
(
2010
).
21.
S.
Cheng
and
Z. G.
Wu
,
Adv. Funct. Mater.
21
,
2282
(
2011
).
22.
A. L.
Richards
,
M. D.
Dickey
,
A. S.
Kennedy
, and
G. D.
Buckner
,
J. Micromech. Microeng.
22
,
115012
(
2012
).
23.
J. H.
So
,
H. J.
Koo
,
M. D.
Dickey
, and
O. D.
Velev
,
Adv. Funct. Mater.
22
,
625
(
2012
).
24.
J. H.
So
and
M. D.
Dickey
,
Lab Chip
11
,
905
(
2011
).
25.
M. D.
Dickey
,
R. C.
Chiechi
,
R. J.
Larsen
,
E. A.
Weiss
,
D. A.
Weitz
, and
G. M.
Whitesides
,
Adv. Funct. Mater.
18
,
1097
(
2008
).
26.
S. J.
French
,
D. J.
Saunders
, and
G. W.
Ingle
,
J. Phys. Chem.
42
,
265
(
1938
).
27.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University
,
Cambridge
,
2000
), p.
180
.
28.
W. K.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
(
Addison-Wesley
,
Cambridge
,
1955
), p.
125
.
You do not currently have access to this content.