Recently, fabricated two dimensional (2D) phosphorene crystal structures have demonstrated great potential in applications of electronics. Mechanical strain was demonstrated to be able to significantly modify the electronic properties of phosphorene and few-layer black phosphorus. In this work, we employed first principles density functional theory calculations to explore the mechanical properties of phosphorene, including ideal tensile strength and critical strain. It was found that a monolayer phosphorene can sustain tensile strain up to 27% and 30% in the zigzag and armchair directions, respectively. This enormous strain limit of phosphorene results from its unique puckered crystal structure. We found that the tensile strain applied in the armchair direction stretches the pucker of phosphorene, rather than significantly extending the P-P bond lengths. The compromised dihedral angles dramatically reduce the required strain energy. Compared to other 2D materials, such as graphene, phosphorene demonstrates superior flexibility with an order of magnitude smaller Young's modulus. This is especially useful in practical large-magnitude-strain engineering. Furthermore, the anisotropic nature of phosphorene was also explored. We derived a general model to calculate the Young's modulus along different directions for a 2D system.

1.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
2.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
D.
Tomanek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
3.
F.
Xia
,
H.
Wang
, and
Y.
Jia
, e-print arXiv:1402.0270.
5.
Y.
Takao
and
A.
Morita
,
Physica B+C
105
(
1–3
),
93
98
(
1981
).
6.
A. S.
Rodin
,
A.
Carvalho
, and
A. H. Castro
Neto
,
Phys. Rev. Lett.
112
,
176801
(
2014
).
7.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
, e-print arXiv:1402.4192.
8.
X.
Peng
,
A.
Copple
, and
Q.
Wei
, e-print arXiv:1403.3771.
9.
R. S.
Jacobsen
,
K. N.
Andersen
,
P. I.
Borel
,
J.
Fage-Pedersen
,
L. H.
Frandsen
,
O.
Hansen
,
M.
Kristensen
,
A. V.
Lavrinenko
,
G.
Moulin
,
H.
Ou
,
C.
Peucheret
,
B.
Zsigri
, and
A.
Bjarklev
,
Nature
441
(
7090
),
199
202
(
2006
).
10.
M. R.
Falvo
,
G. J.
Clary
,
R. M.
Taylor
,
V.
Chi
,
F. P.
Brooks
,
S.
Washburn
, and
R.
Superfine
,
Nature
389
(
6651
),
582
584
(
1997
).
11.
X. H.
Peng
,
A.
Alizadeh
,
S. K.
Kumar
, and
S. K.
Nayak
,
Int. J. Appl. Mech.
1
,
483
499
(
2009
).
12.
P.
Logan
and
X. H.
Peng
,
Phys. Rev. B
80
(
11
),
115322
(
2009
).
13.
X.-H.
Peng
,
F.
Tang
, and
P.
Logan
,
J. Phys.: Condens. Matter
23
,
115502
(
2011
).
14.
Y. G.
Wang
,
Q. L.
Zhang
,
T. H.
Wang
,
W.
Han
, and
S. X.
Zhou
,
J. Phys. D: Appl. Phys.
44
(
12
),
125301
(
2011
).
15.
A.
Copple
,
N.
Ralston
, and
X.
Peng
,
Appl. Phys. Lett.
100
(
19
),
193108
193104
(
2012
).
16.
X. H.
Peng
and
P.
Logan
,
Appl. Phys. Lett.
96
(
14
),
143119
(
2010
).
17.
X.-H.
Peng
,
F.
Tang
, and
P.
Logan
, in
Nanowires - Fundamental Research
, edited by
A.
Hashim
(
InTech
,
Rijeka, Croatia
,
2011
).
18.
T.
Tezuka
,
S.
Sugiyama
,
T.
Mizuno
,
M.
Suzuki
, and
S.-I.
Takagi
,
Jpn. J. Appl. Phys., Part 1
40
,
2866
2874
(
2001
).
19.
T.
Ghani
,
M.
Armstrong
,
C.
Auth
,
M.
Bost
,
P.
Charvat
,
G.
Glass
,
T.
Hoffmann
,
K.
Johnson
,
C.
Kenyon
,
J.
Klaus
,
B.
McIntyre
,
K.
Mistry
,
A.
Murthy
,
J.
Sandford
,
M.
Silberstein
,
S.
Sivakumar
,
P.
Smith
,
K.
Zawadzki
,
S.
Thompson
, and
M.
Bohr
, in
Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest
(
Hillsboro
,
OR, USA
,
2003
), pp. 11.16.11–11.16.13.
20.
A.
Thean
and
J. P.
Leburton
,
Appl. Phys. Lett.
79
(
7
),
1030
1032
(
2001
).
21.
X. L.
Wu
and
F. S.
Xue
,
Appl. Phys. Lett.
84
(
15
),
2808
2810
(
2004
).
22.
L.
Seravalli
,
M.
Minelli
,
P.
Frigeri
,
P.
Allegri
,
V.
Avanzini
, and
S.
Franchi
,
Appl. Phys. Lett.
82
(
14
),
2341
2343
(
2003
).
23.
S.
Mazzucato
,
D.
Nardin
,
M.
Capizzi
,
A.
Polimeni
,
A.
Frova
,
L.
Seravalli
, and
S.
Franchi
,
Mater. Sci. Eng., C
25
(
5–8
),
830
834
(
2005
).
24.
A. I.
Hochbaum
and
P.
Yang
,
Chem. Rev.
110
(
1
),
527
546
(
2010
).
25.
X.
Peng
and
A.
Copple
,
Phys. Rev. B
87
(
11
),
115308
(
2013
).
26.
R.
Fei
and
L.
Yang
,
Nano Lett.
14
,
2884
(2014).
27.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
,
Nature
457
(
7230
),
706
710
(
2009
).
28.
C.
Lee
,
X. D.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
(
5887
),
385
388
(
2008
).
29.
A.
Castellanos-Gomez
,
M.
Poot
,
G. A.
Steele
,
H. S. J. van der
Zant
,
N.
Agrait
, and
G.
Rubio-Bollinger
,
Nanoscale Res. Lett.
7
,
233
(
2012
).
30.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
(
4
A),
A1133
A1138
(
1965
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
32.
P. E.
Blochl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
33.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
34.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
35.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
36.
A.
Brown
and
S.
Rundqvist
,
Acta Crystallogr.
19
,
684
(
1965
).
37.
J.
Qiao
,
X.
Kong
,
Z.-X.
Hu
,
F.
Yang
, and
W.
Ji
, e-print arXiv:1401.5045.
38.
T.
Li
,
J. W.
Morris
,
N.
Nagasako
,
S.
Kuramoto
, and
D. C.
Chrzan
,
Phys. Rev. Lett.
98
(
10
),
105503
(
2007
).
39.
F.
Liu
,
P.
Ming
, and
J.
Li
,
Phys. Rev. B
76
(
6
),
064120
(
2007
).
40.
D.
Roundy
and
M. L.
Cohen
,
Phys. Rev. B
64
(
21
),
212103
(
2001
).
41.
W.
Luo
,
D.
Roundy
,
M. L.
Cohen
, and
J. W.
Morris
,
Phys. Rev. B
66
(
9
),
094110
(
2002
).
42.
Y.
Kôzuki
,
Y.
Hanayama
,
M.
Kimura
,
T.
Nishitake
, and
S.
Endo
,
J. Phys. Soc. Jpn.
60
(
5
),
1612
1618
(
1991
).
43.
L.
Cartz
,
S. R.
Srinivasa
,
R. J.
Riedner
,
J. D.
Jorgensen
, and
T. G.
Worlton
,
J. Chem. Phys.
71
(
4
),
1718
1721
(
1979
).
44.
J.
Zhou
and
R.
Huang
,
J. Mech. Phys. Solids
56
(
4
),
1609
1623
(
2008
).
45.
A.
Castellanos-Gomez
,
M.
Poot
,
G. A.
Steele
,
H. S. J. van der
Zant
,
N.
Agraït
, and
G.
Rubio-Bollinger
,
Adv. Mater.
24
(
6
),
772
775
(
2012
).
46.
L.
Song
,
L. J.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C. H.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
, and
P. M.
Ajayan
,
Nano Lett.
10
(
8
),
3209
3215
(
2010
).
You do not currently have access to this content.