Yielding in crystalline metals is well known to be governed by dislocation dynamics; however, the structural origin of yielding in metallic glasses (MGs) still remains as an issue of intense debate despite that substantial research efforts have been expended. In this Letter, based on well-designed cyclic microcompression tests, we provide compelling experimental evidence revealing that yielding of MGs is essentially a stress-induced viscous flow process, during which the measured viscosity ranges from 1014 Pa·s to 1011 Pa·s and decreases with the increase of applied stress, resembling the “shear-thinning” behavior of non-Newtonian liquids. This stress-induced non-Newtonian flow finally leads to shear instability, which manifests itself as the phenomenon of delayed yielding common to a variety of MGs.

1.
W.
Klement
,
R. H.
Willens
, and
P.
Duwez
,
Nature
187
(
4740
),
869
(
1960
).
3.
A.
Inoue
and
A.
Takeuchi
,
Acta Mater.
59
,
2243
(
2011
).
4.
W. H.
Wang
,
Adv. Mater.
21
(
45
),
4524
(
2009
).
5.
W. F.
Wu
,
Y.
Li
, and
C. A.
Schuh
,
Philos. Mag.
88
(
1
),
71
(
2008
).
6.
R. T.
Qu
,
M.
Stoica
,
J.
Eckert
, and
Z. F.
Zhang
,
J. Appl. Phys.
108
(
6
),
063509
(
2010
).
7.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
Acta Mater.
55
(
12
),
4067
(
2007
).
8.
9.
10.
11.
W. L.
Johnson
and
K.
Samwer
,
Phys. Rev. Lett.
95
(
19
),
195501
(
2005
).
12.
R.
Huang
,
Z.
Suo
,
J. H.
Prevost
, and
W. D.
Nix
,
J. Mech. Phys. Solids
50
(
5
),
1011
(
2002
).
13.
B.
Dodd
and
Y.
Bai
,
Adiabatic Shear Localization
, 2nd version, (
Elsevier
,
2012
), pp.
215
246
.
15.
D.
Rodney
,
A.
Tanguy
, and
D.
Vandembroucq
,
Modell. Simul. Mater. Sci. Eng.
19
(
8
),
083001
(
2011
).
16.
Y. H.
Liu
,
D.
Wang
,
K.
Nakajima
,
W.
Zhang
,
A.
Hirata
,
T.
Nishi
,
A.
Inoue
, and
M. W.
Chen
,
Phys. Rev. Lett.
106
(
12
),
4
(
2011
).
17.
H.
Wagner
,
D.
Bedorf
,
S.
Küchemann
,
M.
Schwabe
,
B.
Zhang
,
W.
Arnold
, and
K.
Samwer
,
Nature Mater.
10
(
6
),
439
(
2011
).
18.
T.
Ichitsubo
,
E.
Matsubara
,
T.
Yamamoto
,
H. S.
Chen
,
N.
Nishiyama
,
J.
Saida
, and
K.
Anazawa
,
Phys. Rev. Lett.
95
(
24
),
245501
(
2005
).
19.
J. F.
Zeng
,
J. P.
Chu
,
Y. C.
Chen
,
A.
Volland
,
J. J.
Blandin
,
S.
Gravier
, and
Y.
Yang
,
Intermetallics
44
,
121
(
2014
).
20.
J. C.
Ye
,
J.
Lu
,
C. T.
Liu
,
Q.
Wang
, and
Y.
Yang
,
Nature Mater.
9
(
8
),
619
(
2010
).
21.
Y.
Yang
,
J. F.
Zeng
,
J. C.
Ye
, and
J.
Lu
,
Appl. Phys. Lett.
97
,
261905
(
2010
).
22.
L. S.
Huo
,
J. F.
Zeng
,
W. H.
Wang
,
C. T.
Liu
, and
Y.
Yang
,
Acta Mater.
61
(
12
),
4329
(
2013
).
23.
H. B.
Ke
,
J. F.
Zeng
,
C. T.
Liu
, and
Y.
Yang
, “
Structure heterogeneity in metallic glass: Modeling and experiment
,”
J. Mater. Sci. Technol.
(published online).
24.
P.
Guan
,
M. W.
Chen
, and
T.
Egami
,
Phys. Rev. Lett.
104
,
205701
(
2010
).
25.
P.
Coussot
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
,
Phy. Rev. Lett.
88
(
17
),
175501
(
2002
).
26.
P.
Sollich
,
F.
Lequeux
,
P.
Hebraud
, and
M. E.
Cates
,
Phy. Rev. Lett.
78
(
10
),
2020
(
1997
).
27.
Y.
Yang
,
J. C.
Ye
,
J.
Lu
,
F. X.
Liu
, and
P. K.
Liaw
,
Acta Mater.
57
(
5
),
1613
(
2009
).
28.
J. C.
Ye
,
J.
Lu
,
Y.
Yang
, and
P. K.
Liaw
,
Intermetallics
18
(
3
),
385
(
2010
).
29.
Z. Y.
Liu
,
Y.
Yang
, and
C. T.
Liu
,
Appl. Phys. Lett.
99
(
17
),
171904
(
2011
).
30.
J. C.
Ye
,
J.
Lu
,
Y.
Yang
, and
P. K.
Liaw
,
Acta Mater.
57
(
20
),
6037
(
2009
).
31.
Y.
Yang
,
J. C.
Ye
,
J.
Lu
,
P. K.
Liaw
, and
C. T.
Liu
,
Appl. Phys. Lett.
96
(
1
),
011905
(
2010
).
32.
Y.
Yang
,
J.
Ye
,
J.
Lu
,
Y.
Gao
, and
P. K.
Liaw
,
JOM
62
(
2
),
93
(
2010
).
33.
Y.
Yang
and
C. T.
Liu
,
J. Mater. Sci.
47
(
1
),
55
(
2012
).
34.
H. B.
Ke
,
B. A.
Sun
,
C. T.
Liu
, and
Y.
Yang
,
Acta Mater.
63
,
180
(
2014
).
35.
A. L.
Greer
,
Y. Q.
Cheng
, and
E.
Ma
,
Mater. Sci. Eng., R
74
(
4
),
71
(
2013
).
36.
A. M. V.
Putz
and
T. I.
Burghelea
,
Rheologica Acta
48
(
6
),
673
(
2009
).
You do not currently have access to this content.