Microtubules are known to be involved in intracellular signaling. Here, we show in silico that electrically polar collective vibration modes of microtubules form electric oscillating potential which is quasi-periodic both in space and in time. While single mode microtubule vibration excites an electric field with spatially stationary local minima and maxima of the electric field, the multimode excitation causes the formation of an electric pulse and many transient local electric field minima. The biophysical mechanism we describe lends support to the view that microtubules may comprise a substrate for ultra-fast electrical signaling in neurons or other living cells.

1.
G. G.
Gundersen
and
T. A.
Cook
,
Curr. Opin. Cell Biol.
11
,
81
(
1999
).
2.
J. A.
Tuszynski
,
E. J.
Carpenter
,
J. T.
Huzil
,
W.
Malinski
,
T.
Luchko
, and
R. F.
Luduena
,
Int. J. Dev. Biol.
50
,
341
(
2006
).
3.
R.
Stracke
,
K.
Böhm
,
L.
Wollweber
,
J.
Tuszynski
, and
E.
Unger
,
Biochem. Biophys. Res. Commun.
293
,
602
(
2002
).
4.
I.
Minoura
and
E.
Muto
,
Biophys. J.
90
,
3739
(
2006
).
5.
S.
Sahu
,
S.
Ghosh
,
B.
Ghosh
,
K.
Aswani
,
K.
Hirata
,
D.
Fujita
, and
A.
Bandyopadhyay
,
Biosens. Bioelectron.
47
,
141
(
2013
).
6.
M.
Van den Heuvel
,
R.
Bondesan
,
M.
Cosentino Lagomarsino
, and
C.
Dekker
,
Phys. Rev. Lett.
101
,
118301
(
2008
).
7.
S.
Sahu
,
S.
Ghosh
,
K.
Hirata
,
D.
Fujita
, and
A.
Bandyopadhyay
,
Appl. Phys. Lett.
102
,
123701
(
2013
).
8.
A.
Priel
,
J. A.
Tuszynski
, and
H. F.
Cantiello
,
Electromagn. Biol. Med.
24
,
221
(
2005
).
9.
J.
Pokorný
,
J.
Hašek
, and
F.
Jelínek
,
J. Biol. Phys.
31
,
501
(
2005
).
10.
S.
Hameroff
and
R.
Penrose
,
Phys. Life Rev.
10
,
95
96
(
2013
).
11.
J.
Pokorný
,
F.
Jelínek
,
V.
Trkal
,
I.
Lamprecht
, and
R.
Hölzel
,
J. Biol. Phys.
23
,
171
(
1997
).
12.
Y. M.
Sirenko
,
M. A.
Stroscio
, and
K.
Kim
,
Phys. Rev. E
53
,
1003
(
1996
).
13.
A.
Kis
,
S.
Kasas
,
B.
Babić
,
A.
Kulik
,
W.
Benoit
,
G.
Briggs
,
C.
Schönenberger
,
S.
Catsicas
, and
L.
Forro
,
Phys. Rev. Lett.
89
,
248101
(
2002
).
14.
C.
Wang
,
C.
Ru
, and
A.
Mioduchowski
,
Physica E
35
,
48
(
2006
).
15.
C.
Wang
and
L.
Zhang
,
J. Biomech.
41
,
1892
(
2008
).
16.
M.
Mallakzadeh
,
A.
Pasha Zanoosi
, and
A.
Alibeigloo
,
Commun. Nonlinear Sci. Numer. Simul.
18
,
2240
(
2013
).
17.
M. A.
Deriu
,
M.
Soncini
,
M.
Orsi
,
M.
Patel
,
J. W.
Essex
,
F. M.
Montevecchi
, and
A.
Redaelli
,
Biophys. J.
99
,
2190
(
2010
).
18.
J.
Pokorný
,
J.
Pokorný
, and
J.
Kobilková
,
Integr. Biol.
5
,
1439
(
2013
).
19.
O.
Kučera
and
D.
Havelka
,
Biosystems
109
,
346
(
2012
).
20.
M.
Satarić
,
J.
Tuszynski
, and
R. B.
Žakula
,
Phys. Rev. E
48
,
589
(
1993
).
21.
D. L.
Sekulić
,
B. M.
Satarić
,
J. A.
Tuszynski
, and
M. V.
Satarić
,
Eur. Phys. J. E
34
,
49
(
2011
).
22.
M.
Cifra
,
J.
Pokorný
,
D.
Havelka
, and
O.
Kučera
,
Biosystems
100
,
122
(
2010
).
23.
A.
Priel
,
A. J.
Ramos
,
J. A.
Tuszynski
, and
H. F.
Cantiello
,
Biophys. J.
90
,
4639
(
2006
).
24.
M.
Satarić
,
D.
Ilić
,
N.
Ralević
, and
J. A.
Tuszynski
,
Eur. Biophys. J.
38
,
637
(
2009
).
25.
U.
Kaatze
,
Meas. Sci. Technol.
14
,
N55
(
2003
).
26.
A.
Samarbakhsh
and
J. A.
Tuszynski
,
Eur. Biophys. J.
40
,
937
(
2011
).
27.
F.
Daneshmand
and
M.
Amabili
,
J. Biol. Phys.
38
,
429
(
2012
).
28.
J. A.
Tuszynski
,
T.
Luchko
,
S.
Portet
, and
J. M.
Dixon
,
Eur. Phys. J. E
17
,
29
(
2005
).
29.
F.
Apollonio
,
M.
Liberti
,
A.
Amadei
,
M.
Aschi
,
M.
Pellegrino
,
M.
D'Alessandro
,
M.
D'Abramo
,
A.
Di Nola
, and
G.
d'Inzeo
,
IEEE Trans. Microwave Theory Tech.
56
,
2511
(
2008
).
30.
F.
Apollonio
,
M.
Liberti
,
A.
Paffi
,
C.
Merla
,
P.
Marracino
,
A.
Denzi
,
C.
Marino
, and
G.
d'Inzeo
,
IEEE Trans. Microwave Theory Tech.
61
,
2031
(
2013
).
31.
P. A.
Janmey
,
Physiol. Rev.
78
,
763
(
1998
).
You do not currently have access to this content.