The fabrication of substrates for Surface Enhanced Raman Scattering (SERS) applications matching the needs for high sensitive and reproducible sensors remains a major scientific and technological issue. We correlate the morphological parameters of silver (Ag) nanostructured thin films prepared by sputter deposition on flat silicon (Si) substrates with their SERS activity. A maximum enhancement of the SERS signal has been found at the Ag percolation threshold, leading to the detection of thiophenol, a non-resonant Raman probe, at concentrations as low as 10−10M, which corresponds to enhancement factors higher than 7 orders of magnitude. To gain full control over the developed nanostructure, we employed the combination of in-situ time-resolved microfocus Grazing Incidence Small Angle X-ray Scattering with sputter deposition. This enables to achieve a deepened understanding of the different growth regimes of Ag. Thereby an improved tailoring of the thin film nanostructure for SERS applications can be realized.

1.
M.
Moskovits
,
J. Raman Spectrosc.
36
,
485
(
2005
).
2.
K.
Kneipp
,
Phys. Today
60
(
11
),
40
(
2007
).
3.
S. M.
Nie
and
S. R.
Emery
,
Science
275
,
1102
(
1997
).
4.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
5.
S.
Feng
,
J.
Lin
,
Z.
Huang
,
G.
Chen
,
W.
Chen
,
Y.
Wang
,
R.
Chen
, and
H.
Zeng
,
Appl. Phys. Lett.
102
,
043702
(
2013
).
6.
J.
Chen
,
G. W.
Qin
,
J. S.
Wang
,
J. Y.
Yu
,
B.
Shen
,
S.
Li
,
Y. P.
Ren
,
L.
Zuo
,
W.
Shen
, and
B.
Das
,
Biosens. Bioelectron.
44
,
191
(
2013
).
7.
L.
Guerrini
,
J. V.
Garcia-Ramos
,
C.
Domingo
, and
S.
Sanchez-Cortes
,
Anal. Chem.
81
,
1418
(
2009
).
8.
M. V.
Cañamares
,
J. V.
Garcia-Ramos
,
J. D.
Gomez-Varga
,
C.
Domingo
, and
S.
Sanchez-Cortes
,
Langmuir
21
,
8546
(
2005
).
9.
M. R.
Barmi
,
C.
Andreou
,
M. R.
Hoonejani
,
M.
Moskovits
, and
C. D.
Meinhart
,
Langmuir
29
,
13614
(
2013
).
10.
A.
Gopinath
,
S. V.
Boriskina
,
W. R.
Premasiri
,
L.
Ziegler
,
B. M.
Reinhard
, and
L. Dal
Negro
,
Nano Lett.
9
,
3922
(
2009
).
11.
Q.
Fu
,
D.
Zhang
,
Y.
Chen
,
X.
Wang
,
L.
Han
,
L.
Zhu
,
P.
Wang
, and
H.
Ming
,
Appl. Phys. Lett.
103
,
041122
(
2013
).
12.
F. L.
Yap
,
P.
Thoniyot
,
S.
Krishnan
, and
S.
Krishnamoorthy
,
ACS Nano
6
,
2056
(
2012
).
13.
M. L.
Tseng
,
Y. W.
Huang
,
M. K.
Hsiao
,
H. W.
Huang
,
H. M.
Chen
,
Y. L.
Chen
,
C. H.
Chu
,
N. N.
Chu
,
Y. J.
He
,
C. M.
Chang
et al.,
ACS Nano
6
,
5190
(
2012
).
14.
Z.
Dai
,
X.
Xiao
,
L.
Liao
,
J.
Zheng
,
F.
Mei
,
W.
Wu
,
J.
Ying
,
F.
Ren
, and
C.
Jiang
,
Appl. Phys. Lett.
103
,
041903
(
2013
).
15.
C.
Farcau
,
N. M.
Sangeetha
,
N.
Decorde
,
S.
Astilean
, and
L.
Ressier
,
Nanoscale
4
,
7870
(
2012
).
16.
F.
Faupel
,
V.
Zaporojtchenko
,
H.
Greve
,
U.
Schürmann
,
V. S. K.
Chakravadhanula
,
C.
Hanisch
,
A.
Kulkarni
,
A.
Gerber
,
E.
Quandt
, and
R.
Podschun
,
Contrib. Plasma Phys.
47
,
537
(
2007
).
17.
J. D.
Driskell
,
S.
Shanmukh
,
Y.
Liu
,
S. B.
Chaney
,
X. J.
Tang
,
Y. P.
Zhao
, and
R. A.
Dluhy
,
J. Phys. Chem. C
112
,
895
(
2008
).
18.
J. P.
Singh
,
H.
Chu
,
J.
Abell
,
R. A.
Tripp
, and
Y.
Zhao
,
Nanoscale
4
,
3410
(
2012
).
19.
P.
Müller-Buschbaum
,
Anal. Bioanal. Chem.
376
,
3
(
2003
).
20.
S. V.
Roth
,
M.
Burghammer
,
C.
Riekel
,
P.
Müller-Buschbaum
,
A.
Diehert
,
P.
Panagiotou
, and
H.
Walter
,
Appl. Phys. Lett.
82
,
1935
(
2003
).
21.
D.
Babonneau
,
S.
Camelio
,
E.
Vandenhecke
,
S.
Rousselet
,
M.
Garel
,
F.
Pailloux
, and
P.
Boesecke
,
Phy. Rev. B
85
,
235415
(
2012
).
22.
R.
Döhrmann
,
S.
Botta
,
A.
Buffet
,
G.
Santoro
,
K.
Schlage
,
M.
Schwartzkopf
,
S.
Bommel
,
J. F. H.
Risch
,
R.
Mannweiler
,
S.
Brunner
et al.,
Rev. Sci. Instrum.
84
,
043901
(
2013
).
23.
M.
Schwartzkopf
,
A.
Buffet
,
V.
Körstgens
,
E.
Metwalli
,
K.
Schlage
,
G.
Benecke
,
J.
Perlich
,
M.
Rawolle
,
A.
Rothkirch
,
B.
Heidmann
et al.,
Nanoscale
5
,
5053
(
2013
).
24.
S.
Yu
,
G.
Santoro
,
K.
Sarkar
,
B.
Dicke
,
P.
Wessels
,
S.
Bommel
,
R.
Döhrmann
,
J.
Perlich
,
M.
Kuhlmann
,
E.
Metwalli
et al.,
J. Phys. Chem. Lett.
4
,
3170
(
2013
).
25.
J. S.
Kim
,
E.
Kuk
,
K. N.
Yu
,
J. H.
Kim
,
S. J.
Park
,
H. J.
Lee
,
S. H.
Kim
,
Y. K.
Park
,
Y. H.
Park
,
C. Y.
Hwang
et al.,
Nanomed. Nanotechnol. Biol. Med.
3
,
95
(
2007
).
26.
L.
González-García
,
J.
Parra-Barranco
,
J. R.
Sánchez-Valencia
,
J.
Ferrer
,
M. C.
García-Gutiérrez
,
A.
Barranco
, and
A. R.
González-Elipe
,
Adv. Funct. Mater.
23
,
1655
(
2013
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4884423 for the description of the principle of μGISAXS, substrate pre-treatment, sputter deposition parameters and rate (Spectroscopic ellipsometry, FE-SEM), μGISAXS lateral scan after deposition, SERS enhancement factor calculations, details of μGISAXS data simulation and Field-Emission Scanning Electron Microscopy.
28.
A.
Buffet
,
A.
Rothkirch
,
R.
Dohrmann
,
V.
Körstgens
,
M. M. A.
Kashem
,
J.
Perlich
,
G.
Herzog
,
M.
Schwartzkopf
,
R.
Gehrke
,
P.
Müller-Buschbaum
et al.,
J. Synchrotron. Radiat.
19
,
647
(
2012
).
29.
G.
Santoro
,
A.
Buffet
,
R.
Döhrmann
,
S.
Yu
,
V.
Körstgens
,
P.
Müller-Buschbaum
,
U.
Gedde
,
M.
Hedenqvist
, and
S. V.
Roth
,
Rev. Sci. Instrum.
85
,
043901
(
2014
).
30.
R.
Lazzari
,
J. Appl. Crystallogr.
35
,
406
(
2002
).
31.
32.
J. S.
Maa
,
J. I.
Lee
, and
T. E.
Hutchins
,
J. Vac. Sci. Technol.
11
,
136
(
1974
).
33.
T. W. H.
Oates
and
A.
Mucklich
,
Nanotechnology
16
,
2606
(
2005
).
34.
S.
Grachev
,
M. de
Grazia
,
E.
Barthel
,
E.
Sondergard
, and
R.
Lazzari
,
J. Phys. D: Appl. Phys.
46
,
375305
(
2013
).
35.
K. T.
Carron
and
L. G.
Hurley
,
J. Phys. Chem.
95
,
9979
(
1991
).
36.
T. H.
Joo
,
M. S.
Kim
, and
K.
Kim
,
J. Raman Spectrosc.
18
,
57
(
1987
).
37.
E. M.
Akinoglu
,
T. Y.
Sun
,
J. W.
Gao
,
M.
Giersig
,
Z. F.
Ren
, and
K.
Kempa
,
Appl. Phys. Lett.
103
,
117106
(
2013
).
38.
I.
Izquierdo-Lorenzo
,
J. V.
Garcia-Ramos
, and
S.
Sanchez-Cortes
,
J. Raman Spectrosc.
44
,
1422
(
2013
).
39.
E.
Hao
and
G. C.
Schatz
,
J. Chem. Phys.
120
,
357
(
2004
).
40.
A.
Otto
,
J. Raman Spectrosc.
33
,
593
(
2002
).

Supplementary Material

You do not currently have access to this content.