The possibility of the new class ferroelectric materials of wurtzite structure simple chalcogenide was discussed using modern first-principles calculation technique. Ferroelectricity in the wurtzite structure (P63mc) can be understood by structure distortion from centrosymmetric P63/mmc by relative displacement of cation against anion along c-axis. Calculated potential surface of these compounds shows typical double well between two polar variants. The potential barriers for the ferroelectric polarization switching were estimated to be 0.25 eV/f.u. for ZnO. It is slightly higher energy to the common perovskite ferroelectric compound PbTiO3. Epitaxial tensile strain on the ab-plane (0001) is effective to lower the potential barrier. The potential barrier decreased from 0.25 to 0.15 eV/f.u. by 5% ab-plane expansion in wurtzite structure ZnO. Epitaxial ZnO thin film with donor type defect reduction should be a possible candidate to confirm this ferroelectricity in wurtzite structure simple chalcogenide.

1.
A. Dal
Corso
,
M.
Posternak
,
R.
Resta
, and
A.
Baldereschi
,
Phys. Rev. B
50
,
10715
(
1994
).
2.
S.
Massidda
,
R.
Resta
,
M.
Posternak
, and
A.
Baldereschi
,
Phys. Rev. B
52
,
R16977
(
1995
).
3.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
,
R10024
(
1997
).
4.
Y.
Uetsuji
,
E.
Nomura
,
K.
Koike
,
S.
Sasa
,
M.
Inoue
, and
M.
Yano
,
J. Soc. Mater. Sci., Jpn.
58
,
243
(
2009
).
5.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
63
,
193201
(
2001
).
6.
A.
Onodera
,
N.
Tamaki
,
Y.
Kawamura
,
T.
Sawada
, and
H.
Yamashita
,
Jpn. J. Appl. Phys., Part 1
35
,
5160
(
1996
).
7.
M.
Joseph
,
H.
Tabata
, and
T.
Kawai
,
Appl. Phys. Lett.
74
,
2534
(
1999
).
8.
S.
Sawada
,
S.
Hirotsu
,
H.
Iwamura
, and
Y.
Shiroishi
,
J. Phys. Soc. Jpn.
35
,
946
(
1973
).
9.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
10.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
11.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
12.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
13.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
14.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
15.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
16.
X.
Wu
,
D.
Vanderbilt
, and
D. R.
Hamann
,
Phys. Rev. B
72
,
035105
(
2005
).
17.
S. C.
Abrahams
and
J. L.
Bernstein
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
25
,
1233
(
1969
).
18.
E. H.
Kisi
and
M. M.
Elcombe
,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
45
,
1867
(
1989
).
19.
I. V.
Korneeva
,
Kristallografiya
6
,
630
631
(
1961
).
20.
D. K.
Smith
,
H. W.
Newkirk
, and
J. S.
Kahn
,
J. Electrochem. Soc.
111
,
78
87
(
1964
).
21.
R. E.
Cohen
,
Nature (London)
358
,
136
(
1992
).
22.
Ü.
Özgür
,
Ya. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoçd
,
J. Appl. Phys.
98
,
041301
(
2005
).
23.
J. W.
Bennett
,
K. F.
Garrity
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
109
,
167602
(
2012
).
You do not currently have access to this content.