We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

1.
A.
Uchida
,
Optical Communication with Chaotic Lasers
(
Wiley-VCH
,
2012
).
2.
J.
Otsubo
,
Semiconductor Lasers: Stability, Instability, and Chaos
(
Springer-Verlag
,
2006
).
3.
M. C.
Soriano
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
, and
I.
Fischer
,
Rev. Mod. Phys.
85
,
421
(
2013
).
4.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
,
L.
Pesquera
, and
K. A.
Shore
,
Nature (London)
438
,
343
(
2005
).
5.
K.
Yoshimura
,
J.
Muramatsu
,
P.
Davis
,
T.
Harayama
,
H.
Okumura
,
S.
Morikatsu
,
H.
Aida
, and
A.
Uchida
,
Phys. Rev. Lett.
108
,
070602
(
2012
).
6.
A.
Uchida
,
K.
Amano
,
M.
Inoue
,
K.
Hirano
,
S.
Naito
,
H.
Someya
,
I.
Oowada
,
T.
Kurashige
,
M.
Shiki
,
S.
Yoshimori
,
K.
Yoshimura
, and
P.
Davis
,
Nat. Photonics
2
,
728
(
2008
).
7.
I.
Kanter
,
Y.
Aviad
,
I.
Reidler
,
E.
Cohen
, and
M.
Rosenbluh
,
Nat. Photonics
4
,
58
(
2010
).
8.
F.-Y.
Lin
and
J.-M.
Liu
,
IEEE J. Sel. Top. Quantum Electron.
10
,
991
(
2004
).
9.
Y.
Wang
,
B.
Wang
, and
A.
Wang
,
IEEE Photonics Technol. Lett.
20
,
1636
(
2008
).
10.
M.
Peil
,
I.
Fischer
,
W.
Elsäßer
,
S.
Bakić
,
N.
Damaschke
,
C.
Tropea
,
S.
Stry
, and
J.
Sacher
,
Appl. Phys. Lett.
89
,
091106
(
2006
).
11.
D.
Brunner
,
M. C.
Soriano
,
C. R.
Mirasso
, and
I.
Fischer
,
Nat. Commun.
4
,
1364
(
2013
).
12.
A.
Argyris
,
M.
Hamacher
,
K. E.
Chlouverakis
,
A.
Bogris
, and
D.
Syvridis
,
Phys. Rev. Lett.
100
,
194101
(
2008
).
13.
T.
Harayama
,
S.
Sunada
,
K.
Yoshimura
,
P.
Davis
,
K.
Tsuzuki
, and
A.
Uchida
,
Phys. Rev. A
83
,
031803
R
(
2011
).
14.
S.
Sunada
,
T.
Harayama
,
K.
Arai
,
K.
Yoshimura
,
P.
Davis
,
K.
Tsuzuki
, and
A.
Uchida
,
Opt. Express
19
,
5713
(
2011
).
15.
A.
Argyris
,
S.
Deligiannidis
,
E.
Pikasis
,
A.
Bogris
, and
D.
Syvridis
,
Opt. Express
18
,
18763
(
2010
).
16.
T.
Harayama
and
S.
Shinohara
,
Laser Photonics Rev.
5
,
247
(
2011
).
17.
T.
Fukushima
and
T.
Harayama
,
IEEE J. Sel. Top. Quantum Electron.
10
,
1039
(
2004
).
18.
T.
Fukushima
,
T.
Harayama
,
T.
Miyasaka
, and
P. O.
Vaccaro
,
J. Opt. Soc. Am. B
21
,
935
(
2004
).
19.
ng is given approximately by neff[1(λ/neff)(dneff/dλ)], where neff = 3.3 is the effective refractive index of the cavity, λ ≈ 860 nm is the wavelength of the laser, and dneff/dλ is −1.0 × 104 cm−1. See Ref. [
H. C.
Casey
, Jr.
and
M. B.
Panish
,
Heterostructure Lasers
(
Academic Press
,
1978
)].
20.
A. E.
Siegman
,
Lasers
(
University Science Books
,
Mill Valley, CA
,
1986
), Chap. 19.
21.
T.
Heil
,
I.
Fischer
,
W.
Elsäßer
, and
A.
Gavrielides
,
Phys. Rev. Lett.
87
,
243901
(
2001
);
[PubMed]
T.
Heil
,
I.
Fischer
,
W.
Elsäßer
,
B.
Krauskopf
,
K.
Green
, and
A.
Gavrielides
,
Phys. Rev. E
67
,
066214
(
2003
).
You do not currently have access to this content.